已知雙曲線
的焦點(diǎn)為F
1.F
2,點(diǎn)M在雙曲線上且
,則點(diǎn)M到x軸的距離為 ( )
試題分析:a=1,b=
,c=
;
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002840662735.png" style="vertical-align:middle;" />,所以
,設(shè)
在直角三角形
中,有
,t=
,由
得h=
,故選C。
點(diǎn)評(píng):基礎(chǔ)題,緊扣雙曲線的定義,注意運(yùn)用“等面積法”求點(diǎn)M到x軸的距離。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)如圖所示,橢圓
C:
的離心率
,左焦點(diǎn)為
右焦點(diǎn)為
,短軸兩個(gè)端點(diǎn)為
.與
軸不垂直的直線
與橢圓C交于不同的兩點(diǎn)
、
,記直線
、
的斜率分別為
、
,且
.
(1)求橢圓
的方程;
(2)求證直線
與
軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo).
(3)當(dāng)弦
的中點(diǎn)
落在
內(nèi)(包括邊界)時(shí),求直線
的斜率的取值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知焦點(diǎn)在
軸上的橢圓
過點(diǎn)
,且離心率為
,
為橢圓
的左頂點(diǎn).
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知過點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn).
① 若直線
垂直于
軸,求
的大小;
② 若直線
與
軸不垂直,是否存在直線
使得
為等腰三角形?如果存在,求出直線
的方程;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
是橢圓
上的點(diǎn),
、
是橢圓的兩個(gè)焦點(diǎn),則
的值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在橢圓
中,
分別是其左右焦點(diǎn),若
,則該橢圓離心率的取值范圍是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點(diǎn)P(4,4),圓C:
與橢圓E:
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)
1、F
2分別是橢圓的左、右焦點(diǎn),直線PF
1與圓C相切.
(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
的左、右焦點(diǎn)分別為
,離心率
,
.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過點(diǎn)
的直線
與該橢圓交于
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題12分)直線l:y=kx+1與雙曲線C:
的右支交于不同的兩點(diǎn)A,B
(Ⅰ)求實(shí)數(shù)k的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點(diǎn)F?若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知當(dāng)橢圓的長軸、短軸、焦距依次成等比時(shí)稱橢圓為“黃金橢圓”,請(qǐng)用類比的性質(zhì)定義“黃金雙曲線”,并求“黃金雙曲線”的離心率為( )
查看答案和解析>>