【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若有兩個零點,求
的取值范圍.
【答案】(1)見解析(2)
【解析】
(1)對求導(dǎo),然后對
分類討論即可求出
的單調(diào)區(qū)間;
(2)根據(jù)的單調(diào)性,得出
,必有
,即
,構(gòu)造
,求導(dǎo),得出
在
上單調(diào)遞增,故由
得
,接下來驗證當
時
的零點情況即可.
解:(1)的定義域為
,
因為,
若,則
,則
在
單調(diào)遞增;
若,則當
時,
,當
時,
,
則在
單調(diào)遞減,則
單調(diào)遞增;
(2)由(1)可知,要使有兩個零點,則
,
則,即
,
構(gòu)造,則
,故
在
上單調(diào)遞增,
又,故當
時,
,故由
得
,
當時,由
,則
結(jié)合零點存在性知,在存在唯一實數(shù)
,使得
,
構(gòu)造,
,則
,
故在
單調(diào)遞減,又
,故
,即
,
則,故
,
則,則
,又
,
結(jié)合零點存在性知,在存在唯一實數(shù)
,使得
,
綜上,當有兩個零點時,
.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為
,
是橢圓
上一點,
軸,
.
(1)求橢圓的標準方程;
(2)若直線與橢圓
交于
、
兩點,線段
的中點為
,
為坐標原點,且
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f1(x)=x2,f2(x)=alnx(其中a>0).
(1)求函數(shù)f(x)=f1(x)·f2(x)的極值;
(2)若函數(shù)g(x)=f1(x)-f2(x)+(a-1)x在區(qū)間(,e)內(nèi)有兩個零點,求正實數(shù)a的取值范圍;
(3)求證:當x>0時,.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,
軸的正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
(
),直線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)己知點,直線
與曲線
交于
,
兩點,若
,
,
成等比數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個焦點與上、下頂點構(gòu)成直角三角形,以橢圓
的長軸長為直徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)設(shè)過橢圓右焦點且不平行于軸的動直線與橢圓
相交于
兩點,探究在
軸上是否存在定點
,使得
為定值?若存在,試求出定值和點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線C1的極坐標方程是,在以極點為原點O,極軸為x軸正半軸(兩坐標系取相同的單位長度)的直角坐標系xOy中,曲線C2的參數(shù)方程為
(θ為參數(shù)).
(1)求曲線C1的直角坐標方程與曲線C2的普通方程;
(2)將曲線C2經(jīng)過伸縮變換后得到曲線C3,若M,N分別是曲線C1和曲線C3上的動點,求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是拋物線
的焦點,過點
且與坐標軸不垂直的直線交拋物線于
、
兩點,交拋物線的準線于點
,其中
,
.過點
作
軸的垂線交拋物線于點
,直線
交拋物線于點
.
(1)求的值;
(2)求四邊形的面積
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),
為兩個平面,命題
:
的充要條件是
內(nèi)有無數(shù)條直線與
平行;命題
:
的充要條件是
內(nèi)任意一條直線與
平行,則下列說法正確的是( )
A.“”為真命題B.“
”為真命題
C.“”為真命題D.“
”為真命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com