【題目】已知a>0,且a≠1,函數(shù) ,設(shè)函數(shù)f(x)的最大值為M,最小值為N,則(
A.M+N=8
B.M+N=10
C.M﹣N=8
D.M﹣N=10

【答案】A
【解析】解:
令g(x)=ln( ﹣2x),x∈[﹣1,1],
由g(﹣x)=ln( +2x)=ln
=﹣ln( ﹣2x)=﹣g(x),
可知g(﹣x)=﹣g(x),
故g(x)函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,
設(shè)g(x)的最大值是a,則g(x)的最小值是﹣a,
=5﹣ ,
令h(x)=﹣ ,
0<a<1時(shí),h(x)在[﹣1,1]遞減,
h(x)的最小值是h(﹣1)=﹣ ,
h(x)的最大值是h(1)=﹣ ,
故h(﹣1)+h(1)=﹣2,
∴f(x)的最大值與最小值的和是10﹣2=8,
a>1時(shí),h(x)在[﹣1,1]遞增,
h(x)的最大值是h(﹣1)=﹣
h(x)的最小值是h(1)=﹣ ,
故h(﹣1)+h(1)=﹣2,
故函數(shù)f(x)的最大值與最小值之和為8,
綜上:函數(shù)f(x)的最大值與最小值之和為8,
故選:A.
【考點(diǎn)精析】利用函數(shù)的最大(小)值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣ax+cosx(a∈R),x∈[﹣ , ].
(1)若函數(shù)f(x)是偶函數(shù),試求a的值;
(2)當(dāng)a>0時(shí),求證:函數(shù)f(x)在(0, )上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x+ +1(a∈R).
(1)討論f(x)的單調(diào)性與極值點(diǎn)的個(gè)數(shù);
(2)當(dāng)a=0時(shí),關(guān)于x的方程f(x)=m(m∈R)有2個(gè)不同的實(shí)數(shù)根x1 , x2 , 證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在高二年級(jí)實(shí)行選課走班教學(xué),學(xué)校為學(xué)生提供了多種課程,其中數(shù)學(xué)科提供5種不同層次的課程,分別稱為數(shù)學(xué)1、數(shù)學(xué)2、數(shù)學(xué)3、數(shù)學(xué)4、數(shù)學(xué)5,每個(gè)學(xué)生只能從這5種數(shù)學(xué)課程中選擇一種學(xué)習(xí),該校高二年級(jí)1800名學(xué)生的數(shù)學(xué)選課人數(shù)統(tǒng)計(jì)如表:

課程

數(shù)學(xué)1

數(shù)學(xué)2

數(shù)學(xué)3

數(shù)學(xué)4

數(shù)學(xué)5

合計(jì)

選課人數(shù)

180

540

540

360

180

1800

為了了解數(shù)學(xué)成績(jī)與學(xué)生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學(xué)生中抽取了10人進(jìn)行分析.
(1)從選出的10名學(xué)生中隨機(jī)抽取3人,求這3人中至少有2人選擇數(shù)學(xué)2的概率;
(2)從選出的10名學(xué)生中隨機(jī)抽取3人,記這3人中選擇數(shù)學(xué)2的人數(shù)為X,選擇數(shù)學(xué)1的人數(shù)為Y,設(shè)隨機(jī)變量ξ=X﹣Y,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生成績(jī)的中位數(shù)是83,乙班學(xué)生成績(jī)的平均數(shù)是86,則x+y的值為(

A.168
B.169
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (x>0).
(1)試判斷函數(shù)f(x)在(0,+∞)上單調(diào)性并證明你的結(jié)論;
(2)若f(x)> 恒成立,求整數(shù)k的最大值;
(3)求證:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將分別標(biāo)有“孔”“孟”“之”“鄉(xiāng)”漢字的四個(gè)小球裝在一個(gè)不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻,隨機(jī)摸出一球,不放回;再隨機(jī)摸出一球,兩次摸出的球上的漢字組成“孔孟”的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fn(x)=﹣xn+3ax(a∈R,n∈N+),若對(duì)任意的x1 , x2∈[﹣1,1],都有|f3(x1)﹣f3(x2)|≤1,則a的取值范圍是(
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]

查看答案和解析>>

同步練習(xí)冊(cè)答案