已知雙曲線C的焦點(diǎn)為F1(-2,0),F(xiàn)2(2,0),且離心率為2;
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)若經(jīng)過點(diǎn)M(1,3)的直線l交雙曲線C于A,B兩點(diǎn),且M為AB的中點(diǎn),求直線l的方程.
考點(diǎn):直線與圓錐曲線的關(guān)系,雙曲線的標(biāo)準(zhǔn)方程
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)設(shè)出雙曲線方程,且c=2,再由離心率公式可得a=1,再由a,b,c的關(guān)系,可得b,進(jìn)而得到雙曲線的方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),運(yùn)用點(diǎn)差法,求出直線AB的斜率,進(jìn)而得到AB的方程,再聯(lián)立雙曲線方程,運(yùn)用判別式檢驗(yàn)即可.
解答: 解:(Ⅰ)設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1(a>0,b>0),且c=2,
由于離心率為2,即
c
a
=2,即a=1,
b=
c2-a2
=
3
,
則雙曲線方程為x2-
y2
3
=1;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),
x12-
y12
3
=1,x22-
y22
3
=1.兩式相減得,(x1-x2)(x1+x2)=
1
3
(y1-y2)(y1+y2),
由于M為AB的中點(diǎn),則x1+x2=2,y1+y2=6,
得直線AB的斜率kAB=
y1-y2
x1-x2
=1,
∴直線l的方程為y-3=x-1即y=x+2,代入方程x2-
y2
3
=1,
得2x2-4x-7=0,△=42-4×2×(-7)=72>0,
故所求的直線方程為y=x+2.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查點(diǎn)差法求弦中點(diǎn)的問題,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1+x
+
x
1-x
的定義域?yàn)?div id="sickmeu" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知冪函數(shù)f(x)過點(diǎn)(2,8),求f(x)的解析式;
(2)已知f(
x+3
2
)=x2
-2x,求f(x)的解析式;
(3)已知2f(x)+f(-x)=3x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,集合A={(x,y)|x2-4y2=4},B={(x,y)|y=kx+1},若A∩B為單元素集,則k的值有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線0過拋物線y2=2px(p>0)的焦點(diǎn)F,且交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),若x1+x2=2,|AB|=4.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)求拋物線上的點(diǎn)P到直線m:x-y+3=0的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列判斷不正確的是( 。
A、一個(gè)平面把整個(gè)空間分成兩部分
B、兩個(gè)平面將整個(gè)空間可分為三或四部分
C、任何一個(gè)平面圖形都是一個(gè)平面
D、圓和平面多邊形都可以表示平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的弦AB中點(diǎn)的橫坐標(biāo)為2,則|AB|的最大值為( 。
A、1B、3C、6D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+2ax+3.
(1)關(guān)于x的不等式f(x)≥3a-1對(duì)一切x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(2)解關(guān)于x的不等式f(x)<1;
(3)函數(shù)f(x)在區(qū)間[-1,
2
]上有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從區(qū)間[0,10]中任取一個(gè)整數(shù)a,則a∈[3,6]的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案