【題目】為了研究玉米品種對(duì)產(chǎn)量的 ,某農(nóng)科院對(duì)一塊試驗(yàn)田種植的一批玉米共10000株的生長(zhǎng)情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計(jì)結(jié)果如下:

高莖

矮莖

總計(jì)

圓粒

11

19

30

皺粒

13

7

20

總計(jì)

24

26

50

1)現(xiàn)采用分層抽樣的方法,從該樣本所含的圓粒玉米中取出6株玉米,再?gòu)倪@6株玉米中隨機(jī)選出2株,求這2株之中既有高莖玉米又有矮莖玉米的概率;

2)根據(jù)玉米生長(zhǎng)情況作出統(tǒng)計(jì),是否有95%的把握認(rèn)為玉米的圓粒與玉米的高莖有關(guān)?

附:

0.05

0.01

3.841

6.635

【答案】1;(2的把握認(rèn)為玉米的圓粒與玉米的高莖有關(guān).

【解析】

1)采用分層抽樣的方式,從樣本中取出的6株玉米隨機(jī)選出2株中包含高桿的2株,矮桿的4株,故可求這2株之中既有高桿玉米又有矮桿玉米的概率;(2)帶入公式計(jì)算值,和臨界值表對(duì)比后即可得答案.

1)依題意,取出的6株圓粒玉米中含高莖2株,記為,;矮莖4株,記為,,,

從中隨機(jī)選取2株的情況有如下15種:,,,,,,,,,,

其中滿足題意的共有,,,,,共8種,

則所求概率為

2)根據(jù)已知列聯(lián)表:

高莖

矮莖

合計(jì)

圓粒

11

19

30

皺粒

13

7

20

合計(jì)

24

26

50

,

的把握認(rèn)為玉米的圓粒與玉米的高莖有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知橢圓的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是

(1)求橢圓的方程;

(2)若過橢圓右頂點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù)f(x)滿足f(x)+f′(x)>1,f(0)=4,則不等式f(x)>+1(e為自然對(duì)數(shù)的底數(shù))的解集為(  )

A.(0,+∞)B.(-∞,0)(3,+∞)

C.(-∞,0)(0,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù),滿足為奇函數(shù),且,則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)E是圓心為O1半徑為2的半圓弧上從點(diǎn)B數(shù)起的第一個(gè)三等分點(diǎn),點(diǎn)F是圓心為O2半徑為1的半圓弧的中點(diǎn),AB、CD分別是兩個(gè)半圓的直徑,O1O22,直線O1O2與兩個(gè)半圓所在的平面均垂直,直線AB、DC共面.

1)求三棱錐DABE的體積;

2)求直線DE與平面ABE所成的角的正切值;

3)求直線AFBE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A. “若,則”的否命題為真命題

B. 函數(shù)的最小值為2

C. 命題“若,則”的逆否命題為真命題

D. 命題“”的否定是:“”。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),為線段的中點(diǎn),為線段上點(diǎn),且,設(shè)動(dòng)點(diǎn)的軌跡為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)直線與曲線相交于、兩點(diǎn),與圓相交于另一點(diǎn),且點(diǎn)、位于點(diǎn)的同側(cè),當(dāng)面積最大時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋子中有4個(gè)紅球,2個(gè)白球,若從中任取2個(gè)球,則這2個(gè)球中有白球的概率是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為,直線lC交于AB兩點(diǎn),線段AB中點(diǎn)M的橫坐標(biāo)為2.

1)求C的方程;

2)若l經(jīng)過F,求l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案