【題目】已知函數(shù))記x為的從小到大的第n()個(gè)極植點(diǎn),證明:
(1)數(shù)列的等比數(shù)列
(2)若則對(duì)一切恒成立

【答案】見(jiàn)詳解
【解析】(1)求導(dǎo),可知利用三角函數(shù)的知識(shí)可得的極植點(diǎn)為即可得證,其中
對(duì)因此,在區(qū)間的符號(hào)總是相反的,于是當(dāng)時(shí)f(x)取得極植所以此時(shí)易得f(xn)不等于0而是非零常數(shù)。故數(shù)列的首項(xiàng)為公比為的等比數(shù)列.
(2)分析題意的可知,問(wèn)題等價(jià)于恒成立,構(gòu)造函數(shù),;利用導(dǎo)數(shù)判斷其單調(diào)性即可得證由(1)知于是對(duì)一切恒成立即恒成立,等價(jià)于①恒成立,因?yàn)椋?/span>)設(shè)g(t)=,得t=1
當(dāng)時(shí)因?yàn)間(t)在區(qū)間(0,1)上單調(diào)遞減
當(dāng)時(shí)所以g(t)在區(qū)間(0,1)上單調(diào)遞增
從而當(dāng)t=1時(shí)函數(shù)g(t)取得最小值g(1)=e因此,要是①恒成立只需即只需而當(dāng)時(shí)于是且當(dāng)時(shí)因此對(duì)這一切,不等于1所以故①恒成立綜上所述若則對(duì)一切恒成立.
【考點(diǎn)精析】本題主要考查了導(dǎo)數(shù)的幾何意義和基本求導(dǎo)法則的相關(guān)知識(shí)點(diǎn),需要掌握通過(guò)圖像,我們可以看出當(dāng)點(diǎn)趨近于時(shí),直線與曲線相切.容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時(shí),函數(shù)處的導(dǎo)數(shù)就是切線PT的斜率k,即;若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F為拋物線E:的焦點(diǎn),點(diǎn)A(2,m)在拋物線E上,且|AF|=3

(1)求拋物線E的方程;
(2)已知點(diǎn)G(-1,0) , 延長(zhǎng)AF交拋物線E于點(diǎn)B證明:以點(diǎn)F為圓心且與直線GA相切的圓,必與直線GB相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在多面體A1B1D1-DCBA中,四邊形AA1B1B,ADD1A1,ABCD均為正方形,E為B1D1的中點(diǎn) ,過(guò)A1 , D,E的平面交CD 1于F。

(1)證明:EF∥B1C
(2)求二面角E-A1D-B1的余弦。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復(fù)時(shí)間(單位:天)記錄如下:
A組:10,11,12,13,14,15,16
B組:12,13,15,16,17,14,a
假設(shè)所有病人的康復(fù)時(shí)間互相獨(dú)立,從A,B兩組隨機(jī)各選1人,A組選出的人記為甲,B組選出的人記為乙.
(Ⅰ)求甲的康復(fù)時(shí)間不少于14天的概率;
(Ⅱ)如果人康復(fù)時(shí)間的方差相等?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·湖南)設(shè),且,證明
(1)
(2)不可能同時(shí)成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+c.
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)設(shè)a=b=4,若函數(shù)f(x)有三個(gè)不同零點(diǎn),求c的取值范圍;
(3)求證:a2﹣3b>0是f(x)有三個(gè)不同零點(diǎn)的必要而不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖沖之之子祖暅?zhǔn)俏覈?guó)南北朝時(shí)代偉大的科學(xué)家,他在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢(shì)既同,則積不容異”.意思是,如果兩個(gè)等高的幾何體 在同高處截得的截面面積恒等,那么這兩個(gè)幾何體的體積相等.此即祖暅原理.利用這個(gè)原理求球的體積時(shí),需要構(gòu)造一個(gè)滿足條件的幾何體,已知該幾何體三視圖 如圖所示,用一個(gè)與該幾何體的下底面平行相距為 h(0<h<2) 的平面截該幾何體,則截面面積為 ( )


A.
B.
C.
D.π(4-h2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,設(shè)邊a,b,c所對(duì)的角為A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2 . (Ⅰ)若b+c=5,求b,c的值;
(Ⅱ)若 ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= 有最大值,則實(shí)數(shù)a的取值范圍是(
A.
B.
C.[﹣2,+∞)
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案