【題目】(2015·湖南)設,且,證明
(1)
(2)不可能同時成立

【答案】
(1)

由a>0,b>0,

,

由于,則,

即有,

當且僅當取得等號,


(2)

假設同時成立,

可得

可得

這與矛盾

所以不可能同時成立


【解析】(1)將已知條件中的式子可等價變形為,再由基本不等式即可得證詳見解答(1)(2)利用反證發(fā),假設與同時成立,可求得,從而與矛盾,即可得證,詳見解答(2)
本題主要考查了不等式的證明與反證法等知識點,屬于中檔題,第一小問需將條件中的式子作等價變形,再利用基本不等式即可求解,第二小問從問題不可能同時成立,可以考慮采用反證法證明,否定結論,從而推出矛盾,反證法作為一個相對冷門的數(shù)學方法,在后續(xù)復習時亦應予以關注.
【考點精析】根據(jù)題目的已知條件,利用基本不等式和反證法的相關知識可以得到問題的答案,需要掌握基本不等式:,(當且僅當時取到等號);變形公式:;從命題結論的反面出發(fā)(假設),引出(與已知、公理、定理…)矛盾,從而否定假設證明原命題成立,這樣的證明方法叫做反證法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知 =(1,0), =(1,1),(x,y)= ,若0≤λ≤1≤μ≤2時,z= (m>0,n>0)的最大值為2,則m+n的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}是集合{x|x=3s+3t , s<t且s,t∈N}中所有的數(shù)從小到大排列成的數(shù)列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,將數(shù)列{an}中各項按照上小下大,左小右大的原則排成如圖的等腰直角三角形數(shù)表,則a15的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,AB=1,BB1=2,求:
(1)異面直線B1C1與A1C所成角的大。
(2)四棱錐A1﹣B1BCC1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z滿足|z|= ,z2的虛部為2.
(1)求z;
(2)設z,z2 , z﹣z2在復平面對應的點分別為A,B,C,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·新課標1卷)執(zhí)行右面的程序框圖,如果輸入的t=0.01,則輸出的n=( )

A.5
B.6
C.10
D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)要求求值:
(1)用輾轉相除法求123和48的最大公約數(shù).
(2)用更相減損術求80和36的最大公約數(shù).
(3)把89化為二進制數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1,在△ABC中,內角A,B,C的對邊分別為a,b,c,且f(B)=1.
(1)求B;
(2)若 =3,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是首項為1的單調遞增的等比數(shù)列,且滿足a3 成等差數(shù)列.
(1)求{an}的通項公式;
(2)若bn=log3(anan+1)(n∈N*),求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

同步練習冊答案