在三角形ABC中,
AB
AC
=|
BC
|=8,M為BC邊的中點(diǎn),則中線AM的長(zhǎng)為
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:由M為BC邊的中點(diǎn),可得
AM
=
1
2
(
AB
+
AC
)
,再利用數(shù)量積的性質(zhì)即可得出.
解答: 解:∵M(jìn)為BC邊的中點(diǎn),
AM
=
1
2
(
AB
+
AC
)
,
AM
2
=
1
4
(
AB
2
+
AC
2
+2
AB
AC
)

=
1
4
(82+82+2×8)

=36.
|
AM
|=6

故選:D.
點(diǎn)評(píng):本題考查了向量的平行四邊形法則、數(shù)量積運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足a1=-3,且2an+1an+an+1+4an+3=0,記bn=
1
an+1

(1)求證:數(shù)列{bn+2}為等比數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從{1,2,3,4}中隨機(jī)選一個(gè)數(shù)a,從{1,2,3}中隨機(jī)選取一個(gè)數(shù)b,則b>a的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓:(x+cosθ)2+(y-sinθ)2=1,直線l:y=kx.給出下面四個(gè)命題:
①對(duì)任意實(shí)數(shù)k和θ,直線l和圓M有公共點(diǎn);
②對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù)θ,使得直線l和圓M相切;
③對(duì)任意實(shí)數(shù)θ,必存在實(shí)數(shù)k,使得直線l和圓M相切;
④存在實(shí)數(shù)k和θ,使得圓M上有一點(diǎn)到直線l的距離為3.
其中正確的命題是
 
(寫(xiě)出所以正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
x-4,x≥0
x2,x<0
,則f(-2)=
 
,f[f(0)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2-mx+5在[-2,+∞)上是增函數(shù),則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,給定y軸正半軸上兩點(diǎn)A(0,a),B(0,b)(a>b>0).試在x軸正半軸上求一點(diǎn)C,試在x軸正半軸上求一點(diǎn)C,使∠ACB取得最大值,則C的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱中,ABC-A′B′C′,AB=AC=AA′=2,BC=
3
AB且此三棱柱的各個(gè)頂點(diǎn)都在一個(gè)球面上,則此球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x、y∈R,向量
a
=(x,1),
b
=(1,y),
c
=(-3,6),且
a
b
b
c
,則(
a
+
b
c
=(  )
A、13B、15C、15D、16

查看答案和解析>>

同步練習(xí)冊(cè)答案