如果實數(shù)x,y滿足等式(x-2)2+y2=3,那么(x+1)2+(y+4)2的最大值是
 
考點:圓與圓的位置關系及其判定
專題:計算題,直線與圓
分析:求出:(-1,-4)與圓心(2,0)的距離,即可求出(x+1)2+(y+4)2的最大值.
解答: 解:(-1,-4)與圓心(2,0)的距離為
(2+1)2+(0+4)2
=5,
∴(x+1)2+(y+4)2的最大值是(5+
3
)2
=28+10
3
,
故答案為:28+10
3
點評:本題考查(x+1)2+(y+4)2的最大值,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有編號為1、2、3、4、5的五道不同的政治題和編號為6、7、8、9的四道不同的歷史題,一位同學從這九道題中任意抽取兩道,每道題被抽中的機會相等.
(1)共有多少種不同的抽取結果;
(2)求這位同學抽取的兩道題編號之和小于17但不小于11的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a+b=1,a,b∈R+,則(a+
1
a
2+(b+
1
b
2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x+1,若x-2=0是函數(shù)f(x+1)與g(x)兩函數(shù)圖象的對稱軸,則g(x)的表達式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

tan10°、tan20°、tan30°的大小順序是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B,C,D四個區(qū)域,現(xiàn)在有4種不同的顏色,給A,B,C,D四個區(qū)域涂色,要求每個區(qū)域只涂一色且相鄰區(qū)域不涂同一色,則不同的涂法有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PC切圓O于點C,割線PAB經(jīng)過圓心0,弦CD⊥AB于點E.已知圓O的半徑為3,PA=2,則PC=
 
,OE=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡
1-sin100°
的結果為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(1,-2),
b
=(3,4),
c
=(3,2),則(
a
+2
b
)•
c
=
 

查看答案和解析>>

同步練習冊答案