【題目】如圖,已知AD、BE、CF分別是△ABC三邊的高,H是垂心,AD的延長(zhǎng)線交△ABC的外接圓于點(diǎn)G.
(1)求證:∠CHG=∠ABC;
(2)求證:ABGD=ADHC.
【答案】
(1)證明:∵AD、CF分別是△ABC三邊的高,
∴AD⊥BC,CF⊥AB,
即有∠HDB=∠HFB=90°,
可得四點(diǎn)H,F(xiàn),B,D共圓,
由圓內(nèi)接四邊形的性質(zhì)可得,
∠CHG=∠ABC.
(2)證明:連結(jié)CG,
∵∠ABC與∠AGC同弧圓周角,
∴∠ABC=∠AGC,
∵∠CHG=∠ABC,
∴∠CHG=∠AGC,
∴GC=HC,
在Rt△ADB和Rt△GDC中,
∵∠ABC=∠AGC,即∠ABD=∠CGD,
∴Rt△ADB∽R(shí)t△GDC,
∴ ,
∴ABGD=ADGC,
又∵GC=HC,
∴ABGD=ADHC.
【解析】(1)由三角形的高的定義,可得∠HDB=∠HFB=90°,則四點(diǎn)H,F(xiàn),B,D共圓,由圓內(nèi)接四邊形的性質(zhì),即可得證;(2)連結(jié)CG,由同弧所對(duì)圓周角相等,證得Rt△ADB∽R(shí)t△GDC,由相似三角形的性質(zhì):對(duì)應(yīng)邊成比例,即可得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生對(duì)其30位親屬的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用如圖所示的莖葉圖表示他們的飲食指數(shù)(說(shuō)明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類(lèi)為主).
(1)根據(jù)莖葉圖,幫助這位同學(xué)說(shuō)明這30位親屬的飲食習(xí)慣.
(2)根據(jù)以上數(shù)據(jù)完成如下2×2列聯(lián)表.
(3)能否有99%的把握認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得曲線C.
(1)寫(xiě)出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點(diǎn)分別是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求證: 平面;
(Ⅲ)在棱上求作一點(diǎn),使得,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的函數(shù)是奇函數(shù).
(1)求的值;
(2)若對(duì)任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出40名,將其成績(jī)(均為整數(shù))整理后畫(huà)出的頻率分布直方圖如下:
觀察圖形,回答下列問(wèn)題:
(1)估計(jì)這次環(huán)保知識(shí)競(jìng)賽成績(jī)的中位數(shù);
(2)從成績(jī)是80分以上(包括80分)的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長(zhǎng),則稱(chēng)f(x)為“可構(gòu)造三角形函數(shù)”.已知函數(shù)f(x)=是“可構(gòu)造三角形函數(shù)”,則實(shí)數(shù)t的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從2016年1月1日起,廣東、湖北等18個(gè)保監(jiān)局所轄地區(qū)將納入商業(yè)車(chē)險(xiǎn)改革試點(diǎn)范圍,其中最大的變化是上一年的出險(xiǎn)次數(shù)決定了下一年的保費(fèi)倍率,具體關(guān)系如表:
上一年的 | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
下一年 | 85% | 100% | 125% | 150% | 175% | 200% |
連續(xù)兩年沒(méi)有出險(xiǎn)打7折,連續(xù)三年沒(méi)有出險(xiǎn)打6折 |
有評(píng)估機(jī)構(gòu)從以往購(gòu)買(mǎi)了車(chē)險(xiǎn)的車(chē)輛中隨機(jī)抽取1000輛調(diào)查,得到一年中出險(xiǎn)次數(shù)的頻數(shù)分布如下(并用相應(yīng)頻率估計(jì)車(chē)輛每年出險(xiǎn)次數(shù)的概率):
一年中出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
頻數(shù) | 500 | 380 | 100 | 15 | 4 | 1 |
(1)求某車(chē)在兩年中出險(xiǎn)次數(shù)不超過(guò)2次的概率;
(2)經(jīng)驗(yàn)表明新車(chē)商業(yè)車(chē)險(xiǎn)保費(fèi)與購(gòu)車(chē)價(jià)格有較強(qiáng)的線性相關(guān)關(guān)系,估計(jì)其回歸直線方程為: =120x+1600.(其中x(萬(wàn)元)表示購(gòu)車(chē)價(jià)格,y(元)表示商業(yè)車(chē)險(xiǎn)保費(fèi)).李先生2016 年1月購(gòu)買(mǎi)一輛價(jià)值20萬(wàn)元的新車(chē).根據(jù)以上信息,試估計(jì)該車(chē)輛在2017 年1月續(xù)保時(shí)應(yīng)繳交的保費(fèi),并分析車(chē)險(xiǎn)新政是否總體上減輕了車(chē)主負(fù)擔(dān).(假設(shè)車(chē)輛下一年與上一年都購(gòu)買(mǎi)相同的商業(yè)車(chē)險(xiǎn)產(chǎn)品進(jìn)行續(xù)保)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com