【題目】如圖,從參加環(huán)保知識競賽的學生中抽出40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:

觀察圖形,回答下列問題:

(1)估計這次環(huán)保知識競賽成績的中位數(shù);

(2)從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數(shù)段的概率?

【答案】(1) 70 (2)

【解析】試題分析:(1)根據(jù)頻率分步直方圖的意義,計算可得40~50、50~60、60~70、70~80、90~100這5組的頻率,由頻率的性質(zhì)可得80~90這一組的頻率,進而由頻率、頻數(shù)的關(guān)系,計算可得答案;根據(jù)頻率分步直方圖中計算平均數(shù)、眾數(shù)、中位數(shù)的方法,計算可得答案;(2)記“取出的2人在同一分數(shù)段”為事件E,計算可得80~90之間與90~100之間的人數(shù),并設(shè)為a、b、c、d,和A、B,列舉可得從中取出2人的情況,可得其情況數(shù)目與取出的2人在同一分數(shù)段的情況數(shù)目,由等可能事件的概率公式,計算可得答案.

試題解析(1)中位數(shù)為70

(2)取出的2人在同一分數(shù)段為事件E,因為8090之間的人數(shù)為40×01=4,設(shè)為a、b、c、d,90100之間有40×005=2人,設(shè)為A、B,從這6人中選出2人,有(a,b)、(a,c)、(a,d)、(a,A)、(a、B)、(b,c)、(b,d)、(b,A)、(b、B)、(c、d)、(c、A)、(cB)、(d、A)、(d、B)、(A、B),共15個基本事件,其中事件A包括(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c、d)、(A、B),共7個基本事件,則.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè), 是橢圓上的兩點,橢圓的離心率為,短軸長為2,已知向量, ,且 為坐標原點.

(1)若直線過橢圓的焦點,( 為半焦距),求直線的斜率的值;

(2)試問: 的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且當x>1時,f(x)>0.
(1)判斷函數(shù)f(x)在其定義域(0,+∞)上的單調(diào)性并證明;
(2)解不等式f(x)+f(x﹣2)≤3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷f(x)在(0,+∞)的單調(diào)性;
(2)若x>0,證明:(ex﹣1)ln(x+1)>x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問110名性別不同的中學生是否愛好運動,得到如下的列聯(lián)表:

總計

愛好

40

20

60

不愛好

20

30

50

總計

60

50

110

由K2= 得,K2= ≈7.8

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是(
A.在犯錯誤的概率不超過0.1%的前提下,認為“愛好運動與性別有關(guān)”
B.有99%以上的把握認為“愛好運動與性別有關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好運動與性別無關(guān)”
D.有99%以上的把握認為“愛好運動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進行宣傳,需預估市民購買該款手機是否與年齡有關(guān),現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關(guān)?

(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.

附: .

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.

(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù)y= 的定義域為(
A.(﹣∞,1]
B.(﹣∞,2]??
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]

查看答案和解析>>

同步練習冊答案