【題目】如圖,從參加環(huán)保知識競賽的學生中抽出40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:
觀察圖形,回答下列問題:
(1)估計這次環(huán)保知識競賽成績的中位數(shù);
(2)從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數(shù)段的概率?
【答案】(1) 70 (2)
【解析】試題分析:(1)根據(jù)頻率分步直方圖的意義,計算可得40~50、50~60、60~70、70~80、90~100這5組的頻率,由頻率的性質(zhì)可得80~90這一組的頻率,進而由頻率、頻數(shù)的關(guān)系,計算可得答案;根據(jù)頻率分步直方圖中計算平均數(shù)、眾數(shù)、中位數(shù)的方法,計算可得答案;(2)記“取出的2人在同一分數(shù)段”為事件E,計算可得80~90之間與90~100之間的人數(shù),并設(shè)為a、b、c、d,和A、B,列舉可得從中取出2人的情況,可得其情況數(shù)目與取出的2人在同一分數(shù)段的情況數(shù)目,由等可能事件的概率公式,計算可得答案.
試題解析:(1)中位數(shù)為70
(2)記“取出的2人在同一分數(shù)段”為事件E,因為80~90之間的人數(shù)為40×0.1=4,設(shè)為a、b、c、d,90~100之間有40×0.05=2人,設(shè)為A、B,從這6人中選出2人,有(a,b)、(a,c)、(a,d)、(a,A)、(a、B)、(b,c)、(b,d)、(b,A)、(b、B)、(c、d)、(c、A)、(c、B)、(d、A)、(d、B)、(A、B),共15個基本事件,其中事件A包括(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c、d)、(A、B),共7個基本事件,則.
.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè), 是橢圓上的兩點,橢圓的離心率為,短軸長為2,已知向量, ,且, 為坐標原點.
(1)若直線過橢圓的焦點,( 為半焦距),求直線的斜率的值;
(2)試問: 的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且當x>1時,f(x)>0.
(1)判斷函數(shù)f(x)在其定義域(0,+∞)上的單調(diào)性并證明;
(2)解不等式f(x)+f(x﹣2)≤3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)判斷f(x)在(0,+∞)的單調(diào)性;
(2)若x>0,證明:(ex﹣1)ln(x+1)>x2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】通過隨機詢問110名性別不同的中學生是否愛好運動,得到如下的列聯(lián)表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由K2= 得,K2= ≈7.8
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認為“愛好運動與性別有關(guān)”
B.有99%以上的把握認為“愛好運動與性別有關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好運動與性別無關(guān)”
D.有99%以上的把握認為“愛好運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進行宣傳,需預估市民購買該款手機是否與年齡有關(guān),現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關(guān)?
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.
附: .
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】知函數(shù)y= 的定義域為( )
A.(﹣∞,1]
B.(﹣∞,2]??
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com