在△ABC中,角A、B、C所對的邊長分別為,若角C=120°,,則(   )

A.         B.

C.         D.的大小關(guān)系不能確定

 

【答案】

A

【解析】

試題分析:∵∠C=120°,c=∴由余弦定理可知c2=a2+b2-2abcosC,∴a2-b2=ab,a-b=∵a>0,b>0,∴a-b=

∴a>b,故選A

考點(diǎn):本試題主要考查了解三角形的運(yùn)用?疾橛嘞叶ɡ恚厥饨堑娜呛瘮(shù)值,不等式的性質(zhì),比較法,屬中檔題.

點(diǎn)評:解決該試題的關(guān)鍵是由余弦定理可知c2=a2+b2-2abcosC,進(jìn)而求得a-b=>0, 判斷出a>b.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案