3.已知命題p:x<1;命題q:不等式x2+x-2<0成立,則命題p的( 。┦敲}q.
A.充分而不必要條件B.充要條件
C.必要而不充分條件D.既不充分也不必要條件

分析 對(duì)于命題q:解出不等式,即可判斷出關(guān)系.

解答 解:命題p:x<1;
命題q:不等式x2+x-2<0成立,解得:-2<x<1.
則命題p的充分不必要條件是命題q.
故選:A.

點(diǎn)評(píng) 本題考查了不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=alnx+$\frac{1}{x-1}$(a為常數(shù))在($\frac{1}{4}$,$\frac{1}{2}$)內(nèi)有唯一的極值點(diǎn).
(1)求a的取值范圍.
(2)若x1∈(0,$\frac{1}{2}$),x2∈(2,+∞),試判斷f(x2)-f(x1)與$\frac{8}{9}$ln2+$\frac{2}{3}$的大小并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若角520°的始邊為x軸非負(fù)半軸,則它的終邊落在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列命題正確的是( 。
A.若兩個(gè)平面平行于同一條直線(xiàn),則這兩個(gè)平面平行
B.若有兩條直線(xiàn)與兩個(gè)平面都平行,則這兩個(gè)平面平行
C.若有一條直線(xiàn)與兩個(gè)平面都垂直,則這兩個(gè)平面平行
D.若有一條直線(xiàn)與這兩個(gè)平面所成的角相等,則這兩個(gè)平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知tanθ=-$\frac{5}{12}$,θ∈($\frac{3π}{2}$,2π),則cos(θ+$\frac{π}{4}$)=( 。
A.$\frac{{5\sqrt{2}}}{13}$B.$\frac{{7\sqrt{2}}}{13}$C.$\frac{{17\sqrt{2}}}{26}$D.$\frac{{7\sqrt{2}}}{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,則實(shí)數(shù)a的值為( 。
A.2B.2 或-1C.-2或1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若曲線(xiàn)y=2x-x3在點(diǎn)P處的切線(xiàn)的斜率是-1,則P的橫坐標(biāo)為±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知定義在R上的函數(shù)f(x)=ln(e2x+1)+ax(a∈R)是偶函數(shù).
(1)求實(shí)數(shù)a的值;并判斷f(x)在[0,+∞)上的單調(diào)性;(不必證明)
(2)若f(x2+$\frac{1}{x^2}$)>f(mx+$\frac{m}{x}$)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.求函數(shù)f(x)=sinx+x2+cosx在區(qū)間(-π,π)上的平均變化率.

查看答案和解析>>

同步練習(xí)冊(cè)答案