【題目】如圖,在三棱柱中,每個側(cè)面均為正方形, 為底邊的中點, 為側(cè)棱上的點,且滿足平面.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

【答案】(1)見解析;(2).

【解析】試題分析: (1)因為三棱柱各側(cè)面都是正方形,所以, ,∴平面,∵平面,∴,可證平面,,再利用直線與平面垂直的判定定理進行證明;
(2)中點,連接 ,易知側(cè)面底面,與平面所成角.,然后構(gòu)造直角三角形,在直角三角形中求其正弦值,從而求解.

試題解析:(1)設(shè)的交點為,連接 ,

的中點, 的中點,

,∴,

平面,又平面平面,

,∴的中點,

∵三棱柱各側(cè)面都是正方形,所以 ,

平面,

平面,∴,

由已知得,∴,

平面,

平面,

∵側(cè)面是正方形,∴

, 平面, 平面,∴平面.

(2)取中點,連接, ,

在三棱柱中,∵平面,

∴側(cè)面底面

∵底面是正三角形,且中點,∴,所以側(cè)面,

在平面上的射影.

與平面所成角.

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形的三個頂點的坐標為, .

(1)求平行四邊形的頂點的坐標;

(2)在中,求邊上的高所在直線方程;

(3)求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調(diào)查活動(一人答一份).現(xiàn)從回收的年齡在歲的問卷中隨機抽取了份, 統(tǒng)計結(jié)果如下面的圖表所示.

(1)分別求出的值;

(2)從年齡在答對全卷的人中隨機抽取人授予“環(huán)保之星”,求年齡在的人中至少有人被授予“環(huán)保之星”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求實數(shù)k的值;
(2)設(shè)g(x)=log4(a2x+a),若f(x)=g(x)有且只有一個實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出直線的極坐標方程與曲線的直角坐標方程;

(2)已知與直線平行的直線過點,且與曲線交于兩點,試求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c(a≠0),記f[2](x)=f(f(x)),例:f(x)=x2+1,
則f[2](x)=(f(x))2+1=(x2+1)2+1;
(1)f(x)=x2﹣x,解關(guān)于x的方程f[2](x)=x;
(2)記△=(b﹣1)2﹣4ac,若f[2](x)=x有四個不相等的實數(shù)根,求△的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+1.
(1)判斷函數(shù)f(x)的奇偶性;
(2)用定義法證明函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)圖象上的點,是雙曲線在第四象限這一分支上的動點,過點作直線,使其與雙曲線只有一個公共點,且與軸、軸分別交于點,另一條直線軸、軸分別交于點

則(1)為坐標原點,三角形的面積為__________

(2)四邊形面積的最小值為__________

查看答案和解析>>

同步練習冊答案