已知a=log23,b=log0.53,c=4-
1
2
,則a,b,c的大小關系是(  )
A、a>c>b
B、a<c<b
C、a<b<c
D、a>b>c
考點:對數(shù)值大小的比較
專題:函數(shù)的性質及應用
分析:利用對數(shù)函數(shù)的性質求解.
解答: 解:∵a=log23>log22=1,
b=log0.53<log0.51=0,
c=4-
1
2
=
1
4
=
1
2

∴a,b,c的大小關系是a>c>b.
故選:A.
點評:本題考查對數(shù)值大小的比較,是基礎題,解題時要認真審題,注意對數(shù)函數(shù)性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

a
=(2,3),
b
=(-4,1),則
a
b
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x∈N,x3≥x”的否定為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過點P(1,2)的直線l與x軸正半軸、y軸正半軸分別交于A、B兩點,則△AOB的面積最小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
2
-2
(2x)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義平面向量之間的一種運算“⊙”如下:對任意向量
a
=(x1,y1),
b
=(x2,y2),令
a
b
=x1y2-x2y1,則下列說法中錯誤的是( 。
A、2
a
b
=
a
⊙2
b
B、
a
b
=
b
a
C、|
a
b
|≤|
a
||
b
|
D、若
a
b
共線,則
a
b
=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={y|y=x2},N={y|y=x},則M∩N=( 。
A、(0,+∞)
B、[0,+∞)
C、[0,1]
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
x
-
1
x
+ln3的導函數(shù)為f′(x),則f′(x)=(  )
A、f′(x)=
1
2
x
-
1
x2
+
1
3
B、f′(x)=
1
2
x
+
1
x2
+
1
3
C、f′(x)=
1
2
x
-
1
x2
D、f′(x)=
1
2
x
+
1
x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線(a+1)x+(a-1)y+2a=0(a∈R)與圓x2+y2-2x+2y-7=0的位置關系是(  )
A、相切B、相交C、相離D、不確定

查看答案和解析>>

同步練習冊答案