已知函數(shù),恒過定點(diǎn) (3,2).
(1)求實(shí)數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個單位,再向左平移個單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;
(3)對于定義在[1,9]的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.
(1),(2),(3).
解析試題分析:(1)把點(diǎn)帶入,解方程即可得值,(2)根據(jù)圖像平移變換的規(guī)則可得,再反解得,即的反函數(shù)為,(3)先根據(jù)函數(shù)的定義域求出的取值范圍,再把對數(shù)型函數(shù)不等式恒成立問題轉(zhuǎn)化為關(guān)于二次函數(shù)不等式恒成立問題,進(jìn)而求出值.
試題解析:(1)由已知,∴
(2),由得,
即的反函數(shù)為
(3)要使不等式有意義,則有且, ,
據(jù)題有在恒成立.
∴設(shè),∴.
∴在時恒成立,
即:在時恒成立,
設(shè),
∴時有 ∴.
考點(diǎn):圖像的平移變換,不等式恒成立問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)用定義證明在上單調(diào)遞增;
(2)若是上的奇函數(shù),求的值;
(3)若的值域?yàn)镈,且,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)定義運(yùn)算 若函數(shù).
(1)求的解析式;
(2)畫出的圖像,并指出單調(diào)區(qū)間、值域以及奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
命題p:關(guān)于x的不等式,對一切恒成立;命題q:函是增函數(shù).若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù)滿足:①對任意都有:;②當(dāng)時,,回答下列問題.
(1)證明:函數(shù)在上的圖像關(guān)于原點(diǎn)對稱;
(2)判斷函數(shù)在上的單調(diào)性,并說明理由.
(3)證明:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是同時符合以下性質(zhì)的函數(shù)組成的集合:
①,都有;②在上是減函數(shù).
(1)判斷函數(shù)和()是否屬于集合,并簡要說明理由;
(2)把(1)中你認(rèn)為是集合中的一個函數(shù)記為,若不等式對任意的總成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com