已知圓,直線
(1)判斷直線與圓C的位置關系;
(2)設與圓C交與不同兩點A、B,求弦AB的中點M的軌跡方程;
(3)若定點P(1,1)分弦AB為,求此時直線的方程.

(1)由題意可知,圓心C到直線的距離,所以直線與圓相交;(2);(3)

解析試題分析:(1)相交;(2)當M與P不重合時,設,則,從而得到的軌跡方程,當M與P重合時,也滿足上式,故弦AB中點的軌跡方程是;(3)若定點P(1,1)分弦AB為,則,得到一個關于的方程,聯(lián)立直線和圓的方程,得到關于的一個一元二次方程,根據(jù)兩根之后得到另一個關于的方程,兩個方程聯(lián)立解得,因為是一元二次方程的一個根,代入即可求出的值,從而求出直線的方程.
試題解析:
(1)圓的圓心為,半徑為。
∴圓心C到直線的距離
∴直線與圓C相交;
(2)當M與P不重合時,連結(jié)CM、CP,則

,則,
化簡得:
當M與P重合時,也滿足上式。
故弦AB中點的軌跡方程是
(3)設,由,
,化簡的………①
又由消去……(*)
   …………②
由①②解得,帶入(*)式解得,
∴直線的方程為
考點:本題考查了直線與圓的位置關系的判斷,動點的軌跡方程的求法,向量的坐標運算,體現(xiàn)了方程的思想方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓C的方程為:x2+y2-2mx-2y+4m-4=0.(m∈R).
(1)試求m的值,使圓C的面積最。
(2)求與滿足(1)中條件的圓C相切,且過點(1,-2)的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知平面內(nèi)兩點(-1,1),(1,3).
(Ⅰ)求過兩點的直線方程;
(Ⅱ)求過兩點且圓心在軸上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知以點 為圓心的圓與直線 相切,過點的動直線 與圓 相交于兩點,的中點,直線相交于點 .

(1)求圓的方程;
(2)當時,求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓,直線 ,與圓交與兩點,點.
(1)當時,求的值;
(2)當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點的直線與圓C交于不同的兩點且為
求:的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓的圓心在點,點,求;
(1)過點的圓的切線方程;
(2)點是坐標原點,連結(jié),,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,點,直線,設圓的半徑為,圓心在上.

(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

動圓M過定點A(-,0),且與定圓A´:(x)2y2=12相切.

(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求的取值范圍.

查看答案和解析>>

同步練習冊答案