定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)>f(x),f(0)=1,則不等式f(x)<ex的解集為( 。
A、(-∞,6)
B、(6,+∞)
C、(0,+∞)
D、(-∞,0)
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:構(gòu)造函數(shù)g(x)=
f(x)
ex
,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.
解答: 解:構(gòu)造函數(shù)g(x)=
f(x)
ex
,則函數(shù)的導(dǎo)數(shù)為g′(x)=
f′(x)ex-f(x)ex
(ex)2
=
f′(x)-f(x)
ex
,
∵f′(x)>f(x),∴g′(x)>0,
即g(x)在R上單調(diào)遞增,
∵f(0)=1,∴g(0)=
f(0)
e0
=1
,
則不等式f(x)<ex,等價(jià)為g(x)=
f(x)
ex
<1,
即g(x)<g(0),
則x<0,
即不等式的解集為(-∞,0),
故選:D
點(diǎn)評(píng):本題主要考查不等式的求解,根據(jù)條件構(gòu)造函數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系 是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M=
1
1+
2
+
1
2
+
3
+
1
3
+2
+…+
1
2013
+
2014
,則下列正確的是(  )
A、42<M<43
B、43<M<44
C、44<M<45
D、45<M<46

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)0<a<1,x=loga2,y=loga4,z=a2,則x、y、z的大小關(guān)系為( 。
A、x>y>z
B、y>x>z
C、z>y>x
D、z>x>y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n∈R,i是虛數(shù)單位,若2+ni與m-i互為共軛復(fù)數(shù),則(m+ni)2=( 。
A、5-4iB、5+4i
C、3-4iD、3+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確的是( 。
A、由五個(gè)平面圍成的多面體只能是四棱錐
B、圓柱、圓錐、圓臺(tái)的底面都是圓
C、僅有一組對(duì)面平行的六面體是棱臺(tái)
D、有一個(gè)面是多邊形,其余各面是三角形的幾何體是棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知回歸直線方程中斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為( 。
A、
y
=1.23x+0.08
B、
y
=0.08x+1.23
C、
y
=1.23x+4
D、
y
=1.23x+5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將高一9班參加社會(huì)實(shí)踐編號(hào)為:1,2,3,…,48的48名學(xué)生,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本,已知5號(hào),29號(hào),41號(hào)學(xué)生在樣本中,則樣本中還有一名學(xué)生的編號(hào)是( 。
A、12B、16C、17D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,PA=AB,G為PD中點(diǎn),E在AB上,平面PEC⊥平面PCD.
(1)求證:AG⊥平面PCD;
(2)求證:AG∥平面PEC;
(3)試問(wèn)在棱AD上是否存在點(diǎn)H,使得二面角H-PC-E的大小為60°?若存在,請(qǐng)確定點(diǎn)H的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2-2x=0,直線l的參數(shù)方程為
x=t
y=-2
3
+
3
t
(t為參數(shù)).
(1)設(shè)y=sinθ,求圓C的參數(shù)方程;
(2)直線l與圓C交于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案