已知拋物線的頂點在原點,對稱軸是x軸,拋物線上的點M(-3,m)到焦點的距離為5,求拋物線的方程和m的值.
科目:高中數(shù)學 來源: 題型:
已知直線l:y=-(x-1)與圓O:x2+y2=1在第一象限內(nèi)交于點M,且l與y軸交于點A,則△MOA的面積等于________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知雙曲線-=1(a>0,b>0)的一個焦點與圓x2+y2-10x=0的圓心重合,且雙曲線的離心率等于,則該雙曲線的標準方程為( ).
A.-=1 B.-=1
C.-=1 D.-=1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設拋物線C:x2=2py(p>0)的焦點為F,準線為l,A為C上一點,已知以F為圓心,FA為半徑的圓F交l于B,D兩點.
(1)若∠BFD=90°,△ABD的面積為4 ,求p的值及圓F的方程;
(2)若A,B,F三點在同一直線m上,直線n與m平行,且n與C只有一個公共點,求坐標原點到m,n距離的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知拋物線y2=2px(p>0)的焦點F與雙曲線-=1的右焦點重合,拋物線的準線與x軸的交點為K,點A在拋物線上且|AK|=|AF|,則A點的橫坐標為( ).
A.2 B.3 C.2 D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,拋物線C1:x2=4y,C2:x2=-2py(p>0).點M(x0,y0)在拋物線C2上,
過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O).當x0=1-時,切線MA的斜率為-.
(1)求p的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
橢圓C:+=1(a>b>0)的左、右焦點分別是F1,F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,❶連接PF1,PF2,設∠F1PF2的角平分線PM交C的長軸于點M(m,0),求m的取值范圍;
(3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.❷設直線PF1,PF2的斜率分別為k1,k2,若k≠0,試證明+為定值,❸并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com