已知不等式組
x2-4x+3<0
x2-6x+8<0
的解集是關(guān)于x的不等式2x2+ax-9<0解集的一個(gè)子集,則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):其他不等式的解法
專題:計(jì)算題,不等式的解法及應(yīng)用,集合
分析:先解出不等式組
x2-4x+3<0
x2-6x+8<0
的解集,再由題設(shè)中的包含關(guān)系得出參數(shù)a的不等式組解出其范圍.
解答: 解:由
x2-4x+3<0
x2-6x+8<0
1<x<3
2<x<4
,解得,2<x<3.
不等式2x2+ax-9<0相應(yīng)的函數(shù)圖象開口向上,
令f(x)=2x2+ax-9,
故欲使不等式組
x2-4x+3<0
x2-6x+8<0
的解集是關(guān)于x的不等式2x2+ax-9<0解集的一個(gè)子集,
只需
f(2)≤0
f(3)≤0
,即有
2a-1≤0
3a+9≤0
a≤
1
2
a≤-3

解得,a≤-3.
故答案為:(-∞,-3]
點(diǎn)評:本題考查一元二次不等式的解法以及已知一元二次不等式的解集求參數(shù),綜合考查了一元二次函數(shù)的圖象與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}有a1=a,a2=p(常數(shù)p>0),對任意的正整數(shù)n,Sn=a1+a2+…+an,并有Sn滿足Sn=
n(an-a1)
2

(Ⅰ)求a的值;
(Ⅱ)試確定數(shù)列{an}是否是等差數(shù)列,若是,求出其通項(xiàng)公式,若不是,說明理由;
(Ⅲ)令pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,Tn是數(shù)列{pn}的前n項(xiàng)和,求證:Tn-2n<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若
S2n
Sn
(n∈N*)是非零常數(shù),則稱該數(shù)列為“和等比數(shù)列”;若數(shù)列{cn}是首項(xiàng)為2,公差為d(d≠0)的等差數(shù)列,且數(shù)列{cn}是“和等比數(shù)列”,則c2+c7+c12=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log2[log2(log2x)]=0,則x 
1
2
=(  )
A、
2
B、2
C、2
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y+1=
x
x-1
與y=2sinπx(-2≤x≤4)的圖象所有交點(diǎn)橫坐標(biāo)之和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的偶函數(shù),y=f(x)在[0,+∞)上是減函數(shù),且f(a-3)-f(1-2a)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b都是正實(shí)數(shù),函數(shù)y=2aex+b的圖象過(0,2)點(diǎn),則
1
a
+
1
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+y-2≥0
x-y-2≤0
y≥1
,則目標(biāo)函數(shù)z=x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算sin44°cos14°-cos44°cos76°的結(jié)果等于( 。
A、
1
2
B、
3
3
C、
2
2
D、
3
2

查看答案和解析>>

同步練習(xí)冊答案