【題目】已知函數(shù)f(x)=,g(x)=xlnx.
(Ⅰ)若函數(shù)g(x)的圖象在(1,0)處的切線l與函數(shù)f(x)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ)當(dāng)k=0時(shí),證明:f(x)+g(x)>0;
【答案】(1)(2)見解析
【解析】
(Ⅰ)根據(jù)導(dǎo)函數(shù)的幾何意義求得函數(shù)g(x)的圖象在(1,0)處的切線l的方程,將其方程與函數(shù)f(x)的解析式聯(lián)立,得到關(guān)于x的一元二次方程,由條件可知此方程有一個(gè)解,判別式等于0,可求得實(shí)數(shù)k的值;(Ⅱ)證法一:當(dāng)k=0時(shí),構(gòu)造函數(shù)F(x)=f(x)+g(x)= ,求導(dǎo)判斷函數(shù)F(x)在(0,+∞)上的單調(diào)性,進(jìn)而得其最小值,判斷最小值大于0即可。證法二:對(duì)于函數(shù)g(x)=xlnx,求導(dǎo)判斷其單調(diào)性,可求其最小值,當(dāng)k=0時(shí), ,配方可求其最小值。進(jìn)而可得f(x)+g(x)>
,可證明要證不等式。
(Ⅰ)g(x)的導(dǎo)數(shù)g′(x)=1+lnx,斜率為g′(1)=1,切點(diǎn)為(1,0),則直線l:y=x﹣1,
聯(lián)立y=x2+(k﹣1)x﹣k+,可得x2+2(k﹣2)x﹣2k+5=0,
由l與f(x)的圖象相切,可得△=4(k﹣2)2﹣4(5﹣2k)=0,解得k=1±;
(Ⅱ)證法一:當(dāng)k=0時(shí),F(x)=f(x)+g(x)=xlnx+x2﹣x+,
F′(x)=lnx+x,x>0,顯然F′(x)在(0,+∞)遞增,
設(shè)F′(x0)=0,即lnx0+x0=0,易得x0∈(0,1),
當(dāng)x∈(0,x0),F(xiàn)′(x)<0,F(xiàn)(x)遞減,當(dāng)x∈(x0,+∞),F(xiàn)′(x)>0,F(xiàn)(x)遞增.
F(x)的最小值為F(x0),且為x0lnx0++x02﹣x0+=x0(﹣x0+x0﹣1)+
=﹣x02﹣x0+=﹣(x0+3)(x0﹣1),由x0∈(0,1),F(xiàn)(x0)>0,
故F(x)>0恒成立,即f(x)+g(x)>0恒成立;
證法二:g′(x)=1+lnx,x∈(0,),g′(x)<0,g(x)遞減,
x∈(,+∞),g′(x)>0,g(x)遞增,則g(x)在x=處取得最小值﹣,即g(x)≥,
又k=0時(shí),f(x)=x2﹣x+=(x﹣1)2+1≥1,則f(x)+g(x)>1﹣>0恒成立;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù) .
(1)若x=2是函數(shù)f(x)的極值點(diǎn),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在 上為單調(diào)增函數(shù),求a的取值范圍;
(3)設(shè)m,n為正實(shí)數(shù),且m>n,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,命題對(duì)任意,不等式恒成立,命題存在,使不等式成立.
(1)若為真命題,求的取值范圍;
(2)若為假,為真,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某社區(qū)居民每天參加健身的時(shí)間,某機(jī)構(gòu)在該社區(qū)隨機(jī)采訪男性、女性各50名,其中每人每天的健身時(shí)間不少于1小時(shí)稱為“健身族”,否則稱其為"非健身族”,調(diào)查結(jié)果如下:
健身族 | 非健身族 | 合計(jì) | |
男性 | 40 | 10 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 70 | 30 | 100 |
(1)若居民每人每天的平均健身時(shí)間不低于70分鐘,則稱該社區(qū)為“健身社區(qū)”. 已知被隨機(jī)采訪的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分時(shí)間分別是1.2小時(shí),0.8小時(shí),1.5小時(shí),0.7小時(shí),試估計(jì)該社區(qū)可否稱為“健身社區(qū)”?
(2)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過5%的情況下認(rèn)為“健身族”與“性別”有關(guān)?
參考公式: ,其中.
參考數(shù)據(jù):
0. 50 | 0. 40 | 0. 25 | 0. 05 | 0. 025 | 0. 010 | |
0. 455 | 0. 708 | 1. 321 | 3. 840 | 5. 024 | 6. 635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN分別是邊長(zhǎng)為1的正方形ABCD的邊BCCD的中點(diǎn),將正方形沿對(duì)角線AC折起,使點(diǎn)D不在平面ABC內(nèi),則在翻折過程中,有以下結(jié)論:
①異面直線AC與BD所成的角為定值.
②存在某個(gè)位置,使得直線AD與直線BC垂直.
③存在某個(gè)位置,使得直線MN與平面ABC所成的角為45°.
④三棱錐M-ACN體積的最大值為.
以上所有正確結(jié)論的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)已知過原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn),.
(1)求圓的圓心坐標(biāo);
(2)求線段的中點(diǎn)的軌跡的方程;
(3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;
Ⅱ若直線與曲線C交于點(diǎn)不同于原點(diǎn),與直線l交于點(diǎn)B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地西紅柿從2月1日起開始上市.通過市場(chǎng)調(diào)查,得到西紅柿種植成本(單位:元/)與上市時(shí)間(單位:天)的數(shù)據(jù)如下表:
由表知,體現(xiàn)與數(shù)據(jù)關(guān)系的最佳函數(shù)模型是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知角α的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊過點(diǎn)P(-2,-1).
(1)求cos(2α+)的值;
(2)若角β滿足tanβ=2,求tan(2α+β)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com