【題目】設點,的坐標分別為,,直線,相交于點,且它們的斜率之積為-2,設點的軌跡是曲線.

1)求曲線的方程;

2)已知直線與曲線相交于不同兩點(均不在坐標軸上的點),設曲線軸的正半軸交于點,若,垂足為,求證:直線恒過定點.

【答案】12)見解析

【解析】

1)建立平面直角坐標系,設,根據(jù)直線,的斜率之積為-2,列方程,整理即可得出曲線的軌跡方程.

2)聯(lián)立直線與曲線方程得,根據(jù)有兩個不相同的交點,有根的判別式①,再利用韋達定理得,.

根據(jù)列等式方程,整理即可求出,分別與討論得出直線恒過定點.

解:(1)建立平面直角坐標系,設,

因為直線,的斜率之積為-2

所以,

整理得曲線的方程為:

2)由題意:聯(lián)立

得,

,,則,.

,

所以

,

,

所以均適合①.

時,直線過點,

時,直線過點,舍.

所以直線恒過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,梯形所在的平面與等腰梯形所在的平面互相垂直,,

(1)求證:平面

(2)求二面角的余弦值

(3)線段上是否存在點,使得平面?不需說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過點的直線與拋物線交于、兩點,且當直線斜率為2時,

1)求拋物線的標準方程;

2)過點作拋物線的兩條弦,問在軸上是否存在一定點,使得直線過點時,為定值?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,,若直線上至少存在三個點,使得是直角三角形,則實數(shù)的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓C過點,焦點,圓O的直徑為

(1)求橢圓C及圓O的方程;

(2)設直線l與圓O相切于第一象限內(nèi)的點P

①若直線l與橢圓C有且只有一個公共點,求點P的坐標;

②直線l與橢圓C交于兩點.若的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】回收1噸廢紙可以生產(chǎn)出0.8噸再生紙,可能節(jié)約用水約100噸,節(jié)約用煤約1.2噸,回收1噸廢鉛蓄電池可再生鉛約0.6噸,可節(jié)約用煤約0.8噸,節(jié)約用水約120噸,回收每噸廢鉛蓄電池的費用約0.9萬元,回收1噸廢紙的費用約為0.2萬元.現(xiàn)用于回收廢紙和廢鉛蓄電池的費用不超過18萬元,在保證節(jié)約用煤不少于12噸的前提下,最多可節(jié)約用水約__________噸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中學為研究學生的身體素質(zhì)與體育鍛煉時間的關系,對該校200名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間/分鐘

總人數(shù)

20

36

44

50

40

10

將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達標

鍛煉達標

合計

20

110

合計

并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標”與性別有關?

(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出10人,進行體育鍛煉體會交流,

(i)求這10人中,男生、女生各有多少人?

(ii)從參加體會交流的10人中,隨機選出2人作重點發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學期望.

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,討論函數(shù)的單調(diào)性;

(2)當時,恒有,求實數(shù)的取值范圍.

附:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三國時期吳國數(shù)學家趙爽所注《周牌算經(jīng)》中給出了勾股定理的絕妙證明.右面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實黃實,利用(股勾)朱實黃實弦實,化簡,得勾,設勾股中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù),

A.B.C.D.

查看答案和解析>>

同步練習冊答案