設橢圓的中心是坐標原點,焦點在軸上,離心率,已知點到這個橢圓上的點的最遠距離是4,求這個橢圓的方程.
橢圓的方程為
,∴       
得              
∴設橢圓的方程為

是橢圓上任意一點,則
  (
,則當時,
由已知有,得
,則當時,
由已知有,得(舍去).
綜上所述,.            
所以,橢圓的方程為.     
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知動圓過定點,且和定直線相切.(Ⅰ)求動圓圓心的軌跡的方程;(Ⅱ)已知點,過點作直線與曲線交于兩點,若為實數(shù)),證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的一組斜率為2的平行弦中點的軌跡是(     )
A.橢圓B.圓C.雙曲線D.射線(不含端點)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線M的中心在原點,并以橢圓的焦點為焦點,以拋物線的準線為右準線.
(Ⅰ)求雙曲線M的方程;
(Ⅱ)設直線 與雙曲線M相交于A、B兩點,O是原點.
① 當為何值時,使得?
② 是否存在這樣的實數(shù),使A、B兩點關(guān)于直線對稱?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的兩個焦點為、,點在橢圓上,且,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過圓的圓心,交橢圓、兩點,且、關(guān)于點對稱,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

以O為原點,所在直線為軸,建立如 所示的坐標系。設,點F的坐標為,點G的坐標為。
(1)求關(guān)于的函數(shù)的表達式,判斷函數(shù)的單調(diào)性,并證明你的判斷;
(2)設ΔOFG的面積,若以O為中心,F(xiàn)為焦點的橢圓經(jīng)過點G,求當取最小值時橢圓的方程;
(3)在(2)的條件下,若點P的坐標為,C、D是橢圓上的兩點,且,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率,過Aa,0),
B(0,-b),兩點的直線到原點的距離是
⑴求橢圓的方程 ; 
⑵已知直線ykx+1(k0)交橢圓于不同的兩點EF,且E、F都在以B為圓心的圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,線段AB與CD互相垂直平分于點O,|AB|=2a(a>0),|CD|="2b" (b>0),動點P滿足|PA|·|PB|=|PC|·|PD|.求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與雙曲線方程為相交,如果定點為弦的中點,求該直線的方程。

查看答案和解析>>

同步練習冊答案