雙曲線M的中心在原點(diǎn),并以橢圓的焦點(diǎn)為焦點(diǎn),以拋物線的準(zhǔn)線為右準(zhǔn)線.
(Ⅰ)求雙曲線M的方程;
(Ⅱ)設(shè)直線 與雙曲線M相交于A、B兩點(diǎn),O是原點(diǎn).
① 當(dāng)為何值時(shí),使得?
② 是否存在這樣的實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱?若存在,求出的值;若不存在,說明理由.
(Ⅰ)雙曲線M的方程為.
(Ⅱ)當(dāng)時(shí),使得
②當(dāng)時(shí),存在實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱
(Ⅰ)易知,橢圓的半焦距為:
又拋物線的準(zhǔn)線為:.   ----------2分
設(shè)雙曲線M的方程為,依題意有
,又.
∴雙曲線M的方程為. ----------4分
(Ⅱ)設(shè)直線與雙曲線M的交點(diǎn)為兩點(diǎn)
聯(lián)立方程組 消去y得 ,-------5分
、兩點(diǎn)的橫坐標(biāo)是上述方程的兩個(gè)不同實(shí)根,∴
,
從而有,.   ----------7分
,
.
① 若,則有 ,即 .
∴當(dāng)時(shí),使得.   ----------10分
② 若存在實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱,則必有,
因此,當(dāng)m=0時(shí),不存在滿足條件的k
當(dāng)時(shí),由 得
  
∵A、B中點(diǎn)在直線上,
,代入上式得
,又, ∴----------13分
代入并注意到,得.
∴當(dāng)時(shí),存在實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱----------14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知焦點(diǎn)在軸上,離心率為的橢圓的一個(gè)頂點(diǎn)是拋物線的焦點(diǎn),過橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),交軸于點(diǎn),且,(1)求橢圓方程;(2)證明:為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線與直線沒有公共點(diǎn),則的取值范圍是________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)過點(diǎn)M(1,1)作直線與拋物線交于A、B兩點(diǎn),該拋物線在A、B兩點(diǎn)處的兩條切線交于點(diǎn)P。  (I)求點(diǎn)P的軌跡方程;  (II)求△ABP的面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的左、右焦點(diǎn)分別為、,其中也是拋物線的焦點(diǎn),在第一象限的交點(diǎn),且.(Ⅰ)求橢圓的方程;(Ⅱ)已知菱形的頂點(diǎn)AC在橢圓上,頂點(diǎn)BC在直線上,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)已知橢圓E:的焦點(diǎn)坐標(biāo)為),點(diǎn)M(,)在橢圓E上(1)求橢圓E的方程;(2)O為坐標(biāo)原點(diǎn),⊙的任意一條切線與橢圓E有兩個(gè)交點(diǎn),,求⊙的半徑。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(22) (本小題滿分12分)(注意:在試題卷上作答無(wú)效)如圖,已知拋物線與圓相交于A、B、C、D四個(gè)點(diǎn)。
(Ⅰ)求r的取值范圍
(Ⅱ)當(dāng)四邊形ABCD的面積最大時(shí),求對(duì)角線AC、BD的交點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率,已知點(diǎn)到這個(gè)橢圓上的點(diǎn)的最遠(yuǎn)距離是4,求這個(gè)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是x軸,拋物線上的點(diǎn)M(-3,m)到焦點(diǎn)的距離等于5,求拋物線的方程和M的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案