【題目】若a、b是方程2(lg x)2-lg x6+3=0的兩個(gè)實(shí)根,求lg(ab)·(logab+logba)的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù),若g(x)>2對(duì)任意的x∈R恒成立,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從6名男生和4名女生中任選4人參加比賽,設(shè)被選中女生的人數(shù)為隨機(jī)變量ξ,求:
(Ⅰ)ξ的分布列;
(Ⅱ)所選女生不少于2人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐C﹣OAB中,CO⊥平面AOB,OA=OB=2OC=2,AB=2 ,D為AB的中點(diǎn).
(Ⅰ)求證:AB⊥平面COD;
(Ⅱ)若動(dòng)點(diǎn)E滿足CE∥平面AOB,問:當(dāng)AE=BE時(shí),平面ACE與平面AOB所成的銳二面角是否為定值?若是,求出該銳二面角的余弦值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若f(1-x)=f(1+x),且f(0)=3.
(Ⅰ)求b,c的值;
(Ⅱ)試比較(m∈R)的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠今年擬舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬(wàn)件)與年促銷費(fèi)m(萬(wàn)元)(m≥0)滿足x=3-.已知今年生產(chǎn)的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將今年該產(chǎn)品的利潤(rùn)y(萬(wàn)元)表示為年促銷費(fèi)m(萬(wàn)元)的函數(shù);
(2)求今年該產(chǎn)品利潤(rùn)的最大值,此時(shí)促銷費(fèi)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元.
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬(wàn)元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對(duì)任意的x∈[1,a+1],總有f(x)≤0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體PABCD的直觀圖及三視圖如圖所示,E、F分別為PC、BD的中點(diǎn).
(I)求證:EF∥平面PAD;
(II)求證:平面PDC⊥平面PAD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com