【題目】某廠今年擬舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬(wàn)件)與年促銷費(fèi)m(萬(wàn)元)(m≥0)滿足x=3-.已知今年生產(chǎn)的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

(1)將今年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為年促銷費(fèi)m(萬(wàn)元)的函數(shù);

(2)求今年該產(chǎn)品利潤(rùn)的最大值,此時(shí)促銷費(fèi)為多少萬(wàn)元?

【答案】見(jiàn)解析

【解析】(1)每件產(chǎn)品的成本為元,

y=1.5××x-(8+16x+m)=4+8x-m=4+-m=28--m (m≥0).

產(chǎn)品的利潤(rùn)y萬(wàn)元)關(guān)于年促銷費(fèi)m(萬(wàn)元)的函數(shù)y=28--m(m≥0).

(2)可以證明當(dāng)0≤m≤3時(shí),函數(shù)y=28--m是增函數(shù);

當(dāng)m>3時(shí),函數(shù)y=28--m是減函數(shù),

所以當(dāng)m=3時(shí),函數(shù)y=28--m取最大值,為21,

即今年該產(chǎn)品利潤(rùn)的最大值是21萬(wàn)元,此時(shí)的促銷費(fèi)是3萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=aln x+ (a∈R).

(1)當(dāng)a=1時(shí),求f(x)在x∈[1,+∞)內(nèi)的最小值;

(2)若f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;

(3)求證ln(n+1)> +…+ (n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市出租車的現(xiàn)行計(jì)價(jià)標(biāo)準(zhǔn)是:路程在2 km以內(nèi)(含2 km)按起步價(jià)8元收取,超過(guò)2 km后的路程按1.9 元/km收取,但超過(guò)10 km后的路程需加收50%的返空費(fèi)(即單價(jià)為1.9×(1+50%)=2.85(元/km))

(1)將某乘客搭乘一次出租車的費(fèi)用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);

(2)某乘客的行程為16 km,他準(zhǔn)備先乘一輛出租車行駛8 km后,再換乘另一輛出租車完成余下行程,請(qǐng)問(wèn):他這樣做是否比只乘一輛出租車完成全部行程更省錢?

(現(xiàn)實(shí)中要計(jì)等待時(shí)間且最終付費(fèi)取整數(shù),本題在計(jì)算時(shí)都不予考慮)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x-3|-|x+1|,x∈R.

(1)解不等式f(x)<-1;

(2)設(shè)函數(shù)g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1) 為何值時(shí), .①有且僅有一個(gè)零點(diǎn);②有兩個(gè)零點(diǎn)且均比-1大;

(2)若函數(shù)有4個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)擬生產(chǎn)一種如圖所示的圓柱形易拉罐(上下底面及側(cè)面的厚度不計(jì)).易拉罐的體積為 ,設(shè)圓柱的高度為 ,底面半徑為 ,且.假設(shè)該易拉罐的制造費(fèi)用僅與其表面積有關(guān).已知易拉罐側(cè)面制造費(fèi)用為元/ ,易拉罐上下底面的制造費(fèi)用均為元/ , 為常數(shù),且).

(1)寫(xiě)出易拉罐的制造費(fèi)用(元)關(guān)于的函數(shù)表達(dá)式,并求其定義域;

(2)求易拉罐制造費(fèi)用最低時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),A(2,0),B(0,1)是它的兩個(gè)頂點(diǎn),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).

(1)若=6,求k的值;

(2)求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿足f(a)=的a的值,并求此時(shí)函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)

(1)求函數(shù)g(x)的極大值;

(2)求證:1++…+>ln(n+1)(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案