已知函數(shù),;
(1)求處的切線方程;
(2)若有唯一解,求的取值范圍;
(3)是否存在實數(shù),使得上均為增函數(shù),若存在求出的范圍,若不存在請說明理由
(1)(2)    (3)不存在實數(shù) 
本試題主要考查了導數(shù)的概念和導數(shù)的運算,以及導數(shù)的幾何意義的運用,并利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的零點問題的綜合運用試題。
(1)先求解導數(shù),利用點斜式寫出切線方程。
(2)原方程等價于,令
則函數(shù)軸右側(cè)有唯一交點。轉(zhuǎn)化為圖像與圖像的交點來處理。
(3)分別分析函數(shù)的單調(diào)區(qū)間,然后結(jié)合結(jié)論,判定都是單調(diào)增函數(shù)時的參數(shù)的取值范圍
解:(1); ……………3分
(2)原方程等價于,令
則函數(shù)軸右側(cè)有唯一交點。

,當
上單調(diào)遞減,在上單調(diào)遞增。
時有極小值,時有極大值
有唯一解時     ……………8分
(3)
,當
上單調(diào)遞減,在上單調(diào)遞增。
上單調(diào)遞減,在上單調(diào)遞增。
上單調(diào)遞增, 使得上均為增函數(shù)則滿足,不等式組無解,故不存在實數(shù)   
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.已知函數(shù). 
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù).是否存在實數(shù),使得?若存在,求實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)在區(qū)間(0,3)是增函數(shù),則k的取值范圍是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知為直線為常數(shù))及所圍成的圖形的面積,為直線為常數(shù))及所圍成的圖形的面積,(如圖)
(1)當時,求的值。
(2)若,求的最小值。
  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 已知是函數(shù)的一個極值點.
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù) 的圖象大致是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)
(1)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;
(2) 若函數(shù)處取得極小值是,求的值,并說明在區(qū)間內(nèi)函數(shù)
的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)在區(qū)間上不單調(diào),則實數(shù)的取值范圍是(   ) .
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)為常數(shù))在定義域上是增函數(shù),則實數(shù)的取值范圍是                 

查看答案和解析>>

同步練習冊答案