已知命題p1:存在x0∈R,使得x+x0+1<0成立;p2:對(duì)任意x∈[1,2],x2-1≥0.以下命題為真命題的是( )
A.(綈p1)∧(綈p2) B.p1∨(綈p2)
C.(綈p1)∧p2 D.p1∧p2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=sinωx的圖像的一部分如圖(1),則圖(2)的函數(shù)圖像所對(duì)應(yīng)的解析式可以為( )
A.y=f B.y=f(2x-1)
C.y=f D.y=f
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若集合A={0,1,2,x},B={1,x2},A∪B=A,則滿足條件的實(shí)數(shù)x有( )
A.1個(gè) B.2個(gè)
C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在命題p的四種形式(原命題、逆命題、否命題、逆否命題)中,真命題的個(gè)數(shù)記為f(p),已知命題p:“若兩條直線l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0平行,則a1b2-a2b1=0”.那么f(p)等于( )
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
將a2+b2+2ab=(a+b)2改寫成全稱命題是( )
A.∃a,b∈R,a2+b2+2ab=(a+b)2
B.∃a<0,b>0,a2+b2+2ab=(a+b)2
C.∀a>0,b>0,a2+b2+2ab=(a+b)2
D.∀a,b∈R,a2+b2+2ab=(a+b)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知命題p:∃a0∈R,曲線x2+=1為雙曲線;命題q:x2-7x+12<0的解集是{x|3<x<4}.給出下列結(jié)論:①命題“p∧q”是真命題;②命題“p∧綈q”是假命題;③命題“綈p∨q”是真命題;④命題“綈p∨綈q”是假命題.其中正確的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
下列函數(shù)中,不滿足f(2x)=2f(x)的是( )
A.f(x)=|x| B.f(x)=x-|x|
C.f(x)=x+1 D.f(x)=-x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(x)=(x≠a).
(1)若a=-2,試證明f(x)在(-∞,-2)內(nèi)單調(diào)遞增;
(2)若a>0且f(x)在(1,+∞)內(nèi)單調(diào)遞減,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com