在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且
sin(A+B)
cosAsinB
=
2c
b

(1)求角A;
(2)已知a=
7
2
,bc=6,求b+c的值.
分析:(1)通過(guò)三角形的內(nèi)角和以及正弦定理化簡(jiǎn)已知表達(dá)式,求出A的三角函數(shù)值,即可求角A;
(2)利用a=
7
2
,bc=6,結(jié)合余弦定理直接求解b+c的值.
解答:解:(1)∴
sin(A+B)
cosAsinB
=
2sinC
sinB
,在△ABC中,sin(A+B)=sinC≠0,
cosA=
1
2

∵A∈(0,π),∴A=
π
3
.…(6分)
(2)由余弦定理a2=b2+c2-2bccosA,…(8分)
a=
7
2
,bc=6,cosA=
1
2
,
49
4
=b2+c2-bc=(b+c)2-3bc=(b+c)2-18
,…(10分)
解得:b+c=
11
2
.…(12分)
點(diǎn)評(píng):本題考查正弦定理以及余弦定理的應(yīng)用,三角形的內(nèi)角和的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案