分析:(1)根據(jù)增函數(shù)的奇偶性,單調(diào)性的定義證明
(2)由(1)知,函數(shù)f(x)既是R上的奇函數(shù),∴f(0)=0,f(2t
2-4)+f(4m-2t)>f(0)可轉(zhuǎn)化為f(2t
2-4)>-f(4m-2t),即f(2t
2-4)>f(2t-4m),
又函數(shù)f(x)是R上的增函數(shù),∴2t
2-4>2t-4m,即2t
2-4-2t+4m>0,
法一:令g(t)=2t
2-2t+4m-4,t∈[0,1],只需g(t)min>0即可
法二:分離參數(shù)m,即m>
-(t2-t-2),t∈[0,1]令g(t)=
-(t2-t-2),只需m>g(t)max即可.
解答:解:(1)顯然函數(shù)的定義域?yàn)镽,對(duì)任意x∈R,都有f(-x)=
=
=-
=-f(x)
所以函數(shù)f(x)既是R上的奇函數(shù).
設(shè)x
1,x
2∈R,且x
1<x
2,則f(x
1)-f(x
2)=
-
=
(2x1-1)(2x2+1)-(2x1-1)(2x2+1) |
(2x1+1)(2x2+1) |
=
x
1x
2,∵函數(shù)y=2
x是R上的增函數(shù),且x
1<x
2,∴
2x1<2x2,
2x1+1>0,2x2+1>0,f(x
1)-f(x
2)<0.即f(x
1)<f(x
2),
∴f(x)是R上的增函數(shù);
(2)法一:由(1)知,函數(shù)f(x)既是R上的奇函數(shù),∴f(0)=0,f(2t
2-4)+f(4m-2t)>f(0)可轉(zhuǎn)化為f(2t
2-4)>-f(4m-2t),即f(2t
2-4)>f(2t-4m),
又函數(shù)f(x)是R上的增函數(shù),∴2t
2-4>2t-4m,即2t
2-4-2t+4m>0,令g(t)=2t
2-2t+4m-4,t∈[0,1],拋物線g(t)=2t
2-2t+4m-4的開(kāi)口向上,對(duì)稱(chēng)軸是t=
,且
∈[0,1],所以g(t)min=g(
)=4m-
,故只需4m-
,>0即可,解得
m>.
法二:由(1)知,函數(shù)f(x)既是R上的奇函數(shù),∴f(0)=0,f(2t
2-4)+f(4m-2t)>f(0)可轉(zhuǎn)化為f(2t
2-4)>-f(4m-2t),即f(2t
2-4)>f(2t-4m),
又函數(shù)f(x)是R上的增函數(shù),∴2t
2-4>2t-4m,即2t
2-4-2t+4m>0,即m>
-(t2-t-2),t∈[0,1]令g(t)=
-(t2-t-2),拋物線g(t)=
-(t2-t-2),的開(kāi)口向下,對(duì)稱(chēng)軸是t=
,且
∈[0,1],所以g(t)max=g(
)=
,故只需
m>.
存在
m>.使f(2t
2-4)+f(4m-2t)>f(0)對(duì)任意t∈[0,1]均成立.