已知數(shù)列{an}的前n項(xiàng)和Sn=
(n+1)an2
,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=lnan,是否存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比數(shù)列.若存在,求出所有符合條件的k值;若不存在,請(qǐng)說(shuō)明理由.
分析:(1)直接利用an=Sn-Sn-1 (n≥2)求解數(shù)列的通項(xiàng)公式即可(注意要驗(yàn)證n=1時(shí)通項(xiàng)是否成立).
(2)先利用(1)的結(jié)論求出數(shù)列{bn}的通項(xiàng),再求出bkbk+2的表達(dá)式,利用基本不等式得出不存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比數(shù)列.
解答:解:(1)當(dāng)n≥2時(shí),an=Sn-Sn-1=
(n+1)an
2
-
nan-1
2
,(2分)
an
n
=
an-1
n-1
(n≥2).(4分)
所以數(shù)列{
an
n
}
是首項(xiàng)為
a1
1
=1
的常數(shù)列.(5分)
所以
an
n
=1
,即an=n(n∈N*).
所以數(shù)列{an}的通項(xiàng)公式為an=n(n∈N*).(7分)
(2)假設(shè)存在k(k≥2,m,k∈N*),使得bk、bk+1、bk+2成等比數(shù)列,
則bkbk+2=bk+12.(8分)
因?yàn)閎n=lnan=lnn(n≥2),
所以bkbk+2=lnk•ln(k+2)<[
lnk+ln(k+2)
2
]2=[
ln(k2+2k)
2
]2

<[
ln(k+1)2
2
]2=[ln(k+1)]2=
b
2
k+1
.(13分)
這與bkbk+2=bk+12矛盾.
故不存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比數(shù)列.(14分)
點(diǎn)評(píng):本題考查了已知前n項(xiàng)和為Sn求數(shù)列{an}的通項(xiàng)公式,根據(jù)an和Sn的關(guān)系:an=Sn-Sn-1 (n≥2)求解數(shù)列的通項(xiàng)公式.另外,須注意公式成立的前提是n≥2,所以要驗(yàn)證n=1時(shí)通項(xiàng)是否成立,若成立則:an=Sn-Sn-1 (n≥1);若不成立,則通項(xiàng)公式為分段函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案