在直角坐標系xOy中,點M,點F為拋物線C:y=mx2(m>0)的焦點,線段MF恰被拋物線C平分.
(1)求m的值;
(2)過點M作直線l交拋物線C于A,B兩點,設(shè)直線FA,F(xiàn)M,F(xiàn)B的斜率分別為k1,k2,k3,問k1,k2,k3能否成公差不為零的等差數(shù)列?若能,求直線l的方程;若不能,請說明理由.
解:(1)由題得拋物線C的焦點F的坐標為,線段MF的中點
N在拋物線C上,
∴-=m,8m2+2m-1=0,
∴m=(m=-舍去).
(2)由(1)知拋物線C:x2=4y,F(xiàn)(0,1).
設(shè)直線l的方程為y+=k(x-2),
A(x1,y1),B(x2,y2),由
得x2-4kx+8k+2=0,
Δ=16k2-4(8k+2)>0,
∴
由根與系數(shù)的關(guān)系得
假設(shè)k1,k2,k3能成公差不為零的等差數(shù)列,則k1+k3=2k2.而k1+k3=
=,
k2==-,
∴=-,8k2+10k+3=0,
解得k=-(符合題意)或k=-(不合題意,舍去).
∴直線l的方程為y+=-(x-2),
即x+2y-1=0.
∴k1,k2,k3能成公差不為零的等差數(shù)列,
此時直線l的方程為x+2y-1=0.
科目:高中數(shù)學 來源: 題型:
設(shè)F1,F2分別是雙曲線-=1(a>0,b>0)的左、右焦點,若雙曲線上存在點A,使∠F1AF2=90°,且|AF1|=3|AF2|,則雙曲線的離心率為( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com