解:(1)令x=2,y=1,
由f(x)-f(y)=f(x-y),得f(2)-f(1)=f(2-1)=f(1),
又f(1)=-2,解得f(2)=-4.
(2)f(x)在(-3,3)上是減函數(shù).
證明:在(-3,3)上任取x
1,x
2,且x
1<x
2,則x
1-x
2<0,
令x=x
1,y=x
2,
由f(x)-f(y)=f(x-y),得f(x
1)-f(x
2)=f(x
1-x
2),
∵當(dāng)x<0時,f(x)>0,且x
1-x
2<0,
∴f(x
1-x
2)>0,即f(x
1)-f(x
2)>0,∴f(x
1)>f(x
2),
∴f(x)在(-3,3)上是減函數(shù).
(3)由函數(shù)f(x)在(-3,3)上是奇函數(shù),
得g(x)=f(x-1)+f(3-2x)=f(x-1)-f(2x-3),
g(x)≤0的解集即是f(x-1)-f(2x-3)≤0的解集.
f(x-1)-f(2x-3)≤0即是f(x-1)≤f(2x-3),
由(2)知奇函數(shù)f(x) 在(-3,3)上是減函數(shù),
則有
,解得0<x≤2.
∴不等式g(x)≤0的解集為{x|0<x≤2}.
分析:(1)令x=2,y=1,由f(x)-f(y)=f(x-y)及f(1)=-2即可求得f(2);
(2)在f(x)-f(y)=f(x-y)中,令x=x
1,y=x
2,結(jié)合已知條件及函數(shù)的單調(diào)性可以作出判斷;
(3)由奇函數(shù)的性質(zhì),g(x)≤0可化為f(x-1)-f(2x-3)≤0,也即f(x-1)≤f(2x-3),依據(jù)(2)問的單調(diào)性及函數(shù)定義域可得一不等式組,解出即可.
點評:本題考查抽象函數(shù)的單調(diào)性、奇偶性以及抽象不等式的解法,定義及函數(shù)性質(zhì)是解決抽象函數(shù)問題的主要依據(jù).