已知f1(x)=3|x-1|,f2(x)=a•3|x-2|,(x∈R,a>0).函數(shù)f(x)定義為:對(duì)每個(gè)給定的實(shí)數(shù)x,f(x)=
f1(x)    f1(x)≤f2(x) 
f2(x)    f1(x)>f2(x) 

(1)若f(x)=f1(x)對(duì)所有實(shí)數(shù)x都成立,求a的取值范圍;
(2)設(shè)t∈R,t>0,且f(0)=f(t).設(shè)函數(shù)f(x)在區(qū)間[0,t]上的單調(diào)遞增區(qū)間的長(zhǎng)度之和為d(閉區(qū)間[m,n]的長(zhǎng)度定義為n-m),求
d
t
;
(3)設(shè)g(x)=x2-2bx+3.當(dāng)a=2時(shí),若對(duì)任意m∈R,存在n∈[1,2],使得f(m)≥g(n),求實(shí)數(shù)b的取值范圍.
分析:(1)根據(jù)定義,問題等價(jià)于“f1(x)≤f2(x)恒成立”,從而進(jìn)一步轉(zhuǎn)化為具體不等式恒成立問題,利用最值法可求a的取值范圍;
(2)利用定義,分兩類f(x)=f1(x),與f(x)=f2(x),分別求出單調(diào)遞增區(qū)間的長(zhǎng)度和與相應(yīng)的t的值,從而可解;
(3)對(duì)任意m∈R,存在n∈[1,2],使得f(m)≥g(n),等價(jià)于f(x)min≥g(x)min,分別求出相應(yīng)的最小值即可解得.
解答:解:(1)“f(x)=f1(x)對(duì)所有實(shí)數(shù)都成立”等價(jià)于“f1(x)≤f2(x)恒成立”,即3|x-1|≤a•3|x-2|,即|x-1|-|x-2|≤log3a恒成立,…(2分)(|x-1|-|x-2|)max=1,所以log3a≥1,a的取值范圍是[3,+∞).      …(4分)
(2)由(1)可知,當(dāng)a∈[3,+∞)時(shí),f(x)=f1(x),f(0)=3,所以t=2,函數(shù)的對(duì)稱軸為x=1,函數(shù)f(x)在[0,1]上單調(diào)遞減;在[1,2]上單調(diào)遞增,單調(diào)遞增區(qū)間的長(zhǎng)度和為d=1,
d
t
=
1
2
.                                                        …(6分)
當(dāng)f2(x)≤f1(x)恒成立時(shí),即|x-1|-|x-2|≥log3a恒成立,(|x-1|-|x-2|)min=-1,所以log3a≤-1.
當(dāng)a∈(0,
1
3
]
時(shí),f(x)=f2(x)=a•3|x-2|,函數(shù)的對(duì)稱軸為x=2,由f(0)=f(t),可得t=4.函數(shù)f(x)在[0,2]上單調(diào)遞減;在[2,4]上單調(diào)遞增,單調(diào)遞增區(qū)間的長(zhǎng)度和為d=2,
d
t
=
1
2
.                                                      …(8分)
當(dāng)a∈(
1
3
,3)
時(shí),解不等式3|x-1|≤a•3|x-2|,即解|x-1|-|x-2|≤log3a,其中-1<log3a<1,解得x≤
3
2
+
1
2
log3a
,
所以 f(x)=
3|x-1       x≤
3
2
+
1
2
log3
a•3|x-2    x>
3
2
+
1
2
log3a  
1<
3
2
+
1
2
log3a<2
,f(0)=3,而f(t)=a•3t-2=3,t=3-log3a,
函數(shù)f(x)在[1,
3
2
+
1
2
log3a]
,[2,3-log3a]上單調(diào)遞增,單調(diào)遞增區(qū)間的長(zhǎng)度和為d=(3-log3a-2)+(
3
2
+
1
2
log3a-1)=
3
2
-
1
2
log3a
,
d
t
=
1
2
.           …(11分)
(3)當(dāng)a=2時(shí),f(x)=
3|x-1       x≤
3
2
+
1
2
log3
2•3|x-2    x>
3
2
+
1
2
log32  

即要f(x)min≥g(x)min,…(14分)f(x)min=1.g(x)=(x-b)2+2,當(dāng)x∈[1,2]時(shí),g(x)min=
4-2b,b<1
3-b2 1≤b≤2
7-4b,b>2

所以b的取值范圍是[
2
,+∞)
.                                        …(18分)
點(diǎn)評(píng):本題主要考查恒成立問題的處理策略,考查學(xué)生等價(jià)轉(zhuǎn)化問題的能力,有一定的綜合性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f1(x)=x(x≠0),若對(duì)任意的n∈N*,fw(1)=1,且fmax(x)=fv(x)+xfne(x).
(1)求fn(x)的解析式;
(2)設(shè)Fn(x)=
fn(x)(fn(x)+1)2
,求證:F1(2)+F2(2)+…Fn(2)<1;
(3)若ge(x)=C6020+2C601f1(x)+3C602f2(x)+…+(n+1)Cnxfn(x),是否存在實(shí)數(shù)x,使得g1(x)+g2(x)+…gn(x)=(n+1)(1+x)a,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙F1(x+
3
)2+y2=16
,F2(
3
,0)
,在⊙F1上取點(diǎn)P,連接PF2,作出線段PF2的垂直平分線交PF1于M,當(dāng)點(diǎn)P在⊙F1上運(yùn)動(dòng)時(shí)M形成曲線C.(如圖)
(1)求曲線C的軌跡方程.
(2)過點(diǎn)F2的直線l交曲線C于R,T兩點(diǎn),滿足|RT|=
3
2
,求直線l的方程.
(3)點(diǎn)Q在曲線C上,且滿足F1QF2=
π
3
,求SF1F2Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f1(x)=log3x,f2(x)=(x+3)
1
2
+1
,f3(x)=tanx,則f1[f2(f3(
π
4
))]
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f1(x)=3|x-1|,f2(x)=a•3|x-2|,(x∈R,a>0).函數(shù)f(x)定義為:對(duì)每個(gè)給定的實(shí)數(shù)x,f(x)=
f1(x)    f1(x)≤f2(x) 
f2(x)    f1(x)>f2(x) 

(1)若f(x)=f1(x)對(duì)所有實(shí)數(shù)x都成立,求a的取值范圍;
(2)設(shè)t∈R,t>0,且f(0)=f(t).設(shè)函數(shù)f(x)在區(qū)間[0,t]上的單調(diào)遞增區(qū)間的長(zhǎng)度之和為d(閉區(qū)間[m,n]的長(zhǎng)度定義為n-m),求
d
t
;
(3)設(shè)g(x)=x2-2bx+3.當(dāng)a=2時(shí),若對(duì)任意m∈R,存在n∈[1,2],使得f(m)≥g(n),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案