【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

)求曲線的普通方程與曲線的直角坐標(biāo)方程;

)設(shè)點(diǎn),分別是曲線上兩動點(diǎn)且,求面積的最大值.

【答案】,;(6

【解析】

)根據(jù)題意,消參化簡得曲線的普通方程,對的極坐標(biāo)方程,兩邊同乘,利用及坐標(biāo)公式化簡可得曲線的直角坐標(biāo)方程;

)根據(jù)題意,設(shè)極坐標(biāo),則,分別代入極坐標(biāo)方程中,求得的值,,根據(jù)三角函數(shù)有界性,即可求解最值.

)由條件知消去參數(shù)得到曲線的普通方程為.

可化為,又,代入得,于是曲線的直角坐標(biāo)方程為.

)由條件知曲線均關(guān)于軸對稱,而且外切于原點(diǎn),

不妨設(shè),則,

因曲線的極坐標(biāo)方程為

所以,,

于是,

所以當(dāng)時,面積的最大值為6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對統(tǒng)計(jì)圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,相交于點(diǎn),點(diǎn)在線段上,

1)求證:平面;

2)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知是各項(xiàng)都為正數(shù)的數(shù)列,其前n項(xiàng)和為,且.

1)求證:為等差數(shù)列;

2)設(shè),求的前n項(xiàng)和

3)求集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)的分布列為

1

2

3

4

5

P

0.4

0.2

0.2

0.1

0.1

商場經(jīng)銷一件該商品,采用1期付款,其利潤為200元;分2期或3期付款,其利潤為250元;分4期或5期付款,其利潤為300元,X表示經(jīng)銷一件該商品的利潤.

1)求事件A購買該商品的3位顧客中,至少有1位采用1期付款的概率

2)求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生物研究所為研發(fā)一種新疫苗,在200只小白鼠身上進(jìn)行科研對比實(shí)驗(yàn),得到如下統(tǒng)計(jì)數(shù)據(jù):

未感染病毒

感染病毒

總計(jì)

未注射疫苗

30

注射疫苗

70

總計(jì)

100

100

200

現(xiàn)從未注射疫苗的小白鼠中任取1只,取到感染病毒的小白鼠的概率為.

)能否有的把握認(rèn)為注射此種疫苗有效?

)在未注射疫苗且未感染病毒與注射疫苗且感染病毒的小白鼠中,分別抽取3只進(jìn)行病例分析,然后從這6只小白鼠中隨機(jī)抽取2只對注射疫苗情況進(jìn)行核實(shí),求抽到的2只均是注射疫苗且感染病毒的小白鼠的概率.

附:,

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn)M(﹣2,﹣1),離心率為.過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了提高生產(chǎn)線的運(yùn)行效率,工廠對生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時間長度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:

(Ⅰ)(1)設(shè)所采集的40個連續(xù)正常運(yùn)行時間的中位數(shù),并將連續(xù)正常運(yùn)行時間超過和不超過的次數(shù)填入下面的列聯(lián)表:

超過

不超過

改造前

改造后

試寫出,,的值;

2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時間有差異?

附:,

0.050

0.010

0.001

3.841

6.635

10.828

(Ⅱ)工廠的生產(chǎn)線的運(yùn)行需要進(jìn)行維護(hù).工廠對生產(chǎn)線的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種對生產(chǎn)線設(shè)定維護(hù)周期為天(即從開工運(yùn)行到第天()進(jìn)行維護(hù).生產(chǎn)線在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護(hù)周期,每個維護(hù)周期相互獨(dú)立.在一個維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運(yùn)行,則不會產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測算,正常維護(hù)費(fèi)為0.5萬元次;保障維護(hù)費(fèi)第一次為0.2萬元周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以120天計(jì))內(nèi)的維護(hù)方案:,2,3,4.以生產(chǎn)線在技術(shù)改造后一個維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四個同樣大小的球,,兩兩相切,點(diǎn)是球上的動點(diǎn),則直線與直線所成角的正弦值的取值范圍為( ).

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案