下列結(jié)論:

①若命題p:∃x∈R,tan x=1;命題q:∀x∈R,x2-x+1>0.則命題“p∧綈q”是假

命題;

②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3;

③命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”.其中正確結(jié)論的序號(hào)為_(kāi)_______.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


若函數(shù)f(x)=在x=1處取極值,則a=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若綈p是綈q的充分而不必要

條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


命題“∃x∈R,x2-2x+1≤0”的否定為_(kāi)___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


某產(chǎn)品的總成本y(萬(wàn)元)與產(chǎn)量x(臺(tái))之間的函數(shù)關(guān)系是y=3 000+20x-0.1x2 (0<x<240,

x∈N*),若每臺(tái)產(chǎn)品的售價(jià)為25萬(wàn)元,則生產(chǎn)者不虧本時(shí)(銷(xiāo)售收入不小于總成本)的最低產(chǎn)量是________臺(tái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本y(萬(wàn)元)與年

產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可以近似地表示為y=-48x+8 000,已知此生產(chǎn)線年產(chǎn)量最大為210噸.

(1)求年產(chǎn)量為多少?lài)崟r(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;

(2)若每噸產(chǎn)品平均出廠價(jià)為40萬(wàn)元,那么當(dāng)年產(chǎn)量為多少?lài)崟r(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


(1)m為何值時(shí),f(x)=x2+2mx+3m+4.

①有且僅有一個(gè)零點(diǎn);②有兩個(gè)零點(diǎn)且均比-1大;

(2)若函數(shù)f(x)=|4x-x2|+a有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知對(duì)任意x∈R,不等式恒成立,求實(shí)數(shù)m的取值

范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案