【題目】已知函數(shù)f(x),對任意的a,bR,都有f(ab)f(a)f(b)1,并且當x<0時,f(x)>1.

(1)求證:f(x)R上的減函數(shù);

(2)f(6)7,解不等式f(3m22m2)<4.

【答案】(1)證明見解析;(2) {m|m<1m>}.

【解析】

(1)利用函數(shù)的單調性的定義,即可證得函數(shù)f(x)R上的減函數(shù);

(2)因由f(ab)f(a)f(b)1,可得f(6)f(33)f(3)f(3)17,求得f(3)4,結合函數(shù)的單調性,把不等式轉化為3m22m2>3,即可求解.

(1)由題意,任取x1,x2R,且x1<x2,則x1x2<0,

因為當x<0時,f(x)>1,可得f(x1x2)>1.

又因為f(x1)f(x2)f((x1x2)x2)f(x2)f(x1x2)f(x2)1f(x2)f(x1x2)1>0.

所以f(x1)>f(x2),所以f(x)R上的減函數(shù).

(2)因為f(x)對任意a,bR,有f(ab)f(a)f(b)1,

可得f(6)f(33)f(3)f(3)17,所以f(3)4,

所以f(3m22m2)<4f(3)

又因為f(x)R上的減函數(shù),所以3m22m2>3,解得m<1m>

所以不等式的解集為{m|m<1m>}.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在某親子游戲結束時有一項抽獎活動,抽獎規(guī)則是:盒子里面共有4個小球,小球上分別寫有0,1,2,3的數(shù)字,小球除數(shù)字外其它完全相同,每對親子中,家長先從盒子中取出一個小球,記下數(shù)字后將小球放回,孩子再從盒子中取出一個小球,記下小球上數(shù)字將小球放回.①若取出的兩個小球上數(shù)字之積大于4,則獎勵飛機玩具一個;②若取出的兩個小球上數(shù)字之積在區(qū)間上,則獎勵汽車玩具一個;③若取出的兩個小球上數(shù)字之積小于1,則獎勵飲料一瓶.

(1)求每對親子獲得飛機玩具的概率;

(2)試比較每對親子獲得汽車玩具與獲得飲料的概率,哪個更大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上的奇函數(shù).

(1)求的值;

(2)證明上單調遞減;

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側面是直角三角形,PA=6,頂點P在平面ABC內的正投影為點D,D在平面PAB內的正投影為點E,連結PE并延長交AB于點G.

)證明:GAB的中點;

)在圖中作出點E在平面PAC內的正投影F(說明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,O為坐標原點.

(1)求雙曲線C2的方程;

(2)若直線lykx與雙曲線C2恒有兩個不同的交點AB,且,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知空間幾何體中, 均為邊長為2的等邊三角形, 為腰長為3的等腰三角形,平面平面,平面平面

(1)試在平面內作一條直線,使得直線上任意一點的連線均與平面平行,并給出詳細證明;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電動汽車“行車數(shù)據(jù)”的兩次記錄如下表:

記錄時間

累計里程

(單位:公里)

平均耗電量(單位:公里)

剩余續(xù)航里程

(單位:公里)

2019年1月1日

4000

0.125

280

2019年1月2日

4100

0.126

146

(注:累計里程指汽車從出廠開始累計行駛的路程,累計耗電量指汽車從出廠開始累計消耗的電量,平均耗電量=,剩余續(xù)航里程=,下面對該車在兩次記錄時間段內行駛100公里的耗電量估計正確的是

A. 等于12.5B. 12.5到12.6之間

C. 等于12.6D. 大于12.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C,點x軸的正半軸上,過點M的直線l與拋線C相交于A、B兩點,O為坐標原點.

,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準線相切;

是否存在定點M,使得不論直線l繞點M如何轉動,恒為定值?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案