【題目】某精準(zhǔn)扶貧幫扶單位,為幫助定點(diǎn)扶貧村真正脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助精準(zhǔn)扶貧戶利用互聯(lián)網(wǎng)電商渠道銷(xiāo)售當(dāng)?shù)靥禺a(chǎn)蘋(píng)果.蘋(píng)果單果直徑不同單價(jià)不同,為了更好的銷(xiāo)售,現(xiàn)從該精準(zhǔn)扶貧戶種植的蘋(píng)果樹(shù)上隨機(jī)摘下了50個(gè)蘋(píng)果測(cè)量其直徑,經(jīng)統(tǒng)計(jì),其單果直徑分布在區(qū)間[50,95]內(nèi)(單位:),統(tǒng)計(jì)的莖葉圖如圖所示:

(Ⅰ)從單果直徑落在[72,80)的蘋(píng)果中隨機(jī)抽取3個(gè),求這3個(gè)蘋(píng)果單果直徑均小于76的概率;

(Ⅱ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率.直徑位于[65,90)內(nèi)的蘋(píng)果稱(chēng)為優(yōu)質(zhì)蘋(píng)果,對(duì)于該精準(zhǔn)扶貧戶的這批蘋(píng)果,某電商提出兩種收購(gòu)方案:

方案:所有蘋(píng)果均以5元/千克收購(gòu);

方案:從這批蘋(píng)果中隨機(jī)抽取3個(gè)蘋(píng)果,若都是優(yōu)質(zhì)蘋(píng)果,則按6元/干克收購(gòu);若有1個(gè)非優(yōu)質(zhì)蘋(píng)果,則按5元/千克收購(gòu);若有2個(gè)非優(yōu)質(zhì)蘋(píng)果,則按4.5元/千克收購(gòu);若有3個(gè)非優(yōu)質(zhì)蘋(píng)果,則按4元/千克收購(gòu).

請(qǐng)你通過(guò)計(jì)算為該精準(zhǔn)扶貧戶推薦收益最好的方案.

【答案】(Ⅰ);(Ⅱ)應(yīng)選擇方案.

.

【解析】

(Ⅰ)直徑位于[72,80]的蘋(píng)果共15個(gè),其中小于76的有7個(gè),隨機(jī)抽取3個(gè),利用古典概型求解即可(Ⅱ)計(jì)算方案B價(jià)格的分布列求其期望,與方案A比較即可

(I)直徑位于[72,80]的蘋(píng)果共15個(gè),其中小于76的有7個(gè),隨機(jī)抽取3個(gè),這3個(gè)蘋(píng)果直徑均小于76的概率為;

(Ⅱ)樣本50個(gè)蘋(píng)果中優(yōu)質(zhì)蘋(píng)果有40個(gè),故抽取一個(gè)蘋(píng)果為優(yōu)質(zhì)蘋(píng)果的概率為.

按方案A:收購(gòu)價(jià)格為5元

按方案B:設(shè)收購(gòu)價(jià)格為,則

的分部列為

6

5

4.5

4

0.512

0.384

0.096

0.008

.故應(yīng)選擇方案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若無(wú)窮數(shù)列滿足:只要,必有,則稱(chēng)具有性質(zhì).

1)若具有性質(zhì),且, ,求;

2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列, , 判斷是否具有性質(zhì),并說(shuō)明理由;

3)設(shè)是無(wú)窮數(shù)列,已知.求證:對(duì)任意都具有性質(zhì)的充要條件為是常數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的圓心為為圓上任意一點(diǎn),,線段的垂直平分線交于點(diǎn).

1)求點(diǎn)的軌跡方程;

2)記點(diǎn)的軌跡為曲線,點(diǎn),.若點(diǎn)為直線上一動(dòng)點(diǎn),且不在軸上,直線、分別交曲線兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,拋物線的焦點(diǎn)是,是拋物線上的點(diǎn),H為直線上任一點(diǎn),A,B分別為橢圓C的上下頂點(diǎn),且A,B,H三點(diǎn)的連線可以構(gòu)成三角形.

(Ⅰ)求橢圓C的方程;

(Ⅱ)直線HA,HB與橢圓C的另一交點(diǎn)分別為點(diǎn)D,E,求證:直線DE過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,兩個(gè)焦點(diǎn)與短軸一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形,過(guò)點(diǎn)且與x軸不重合的直線l與橢圓交于M,N不同的兩點(diǎn).

(Ⅰ)求橢圓P的方程;

(Ⅱ)當(dāng)AM與MN垂直時(shí),求AM的長(zhǎng);

(Ⅲ)若過(guò)點(diǎn)P且平行于AM的直線交直線于點(diǎn)Q,求證:直線NQ恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓經(jīng)過(guò)點(diǎn),左、右焦點(diǎn)分別是,點(diǎn)在橢圓上,且滿足點(diǎn)只有兩個(gè).

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)且不垂直于坐標(biāo)軸的直線交橢圓,兩點(diǎn),在軸上是否存在一點(diǎn),使得的角平分線是軸?若存在求出,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自貢農(nóng)科所實(shí)地考察,研究發(fā)現(xiàn)某貧困村適合種植兩種藥材,可以通過(guò)種植這兩種藥材脫貧.通過(guò)大量考察研究得到如下統(tǒng)計(jì)數(shù)據(jù):藥材的畝產(chǎn)量約為300公斤,其收購(gòu)價(jià)格處于上漲趨勢(shì),最近五年的價(jià)格如下表:

編號(hào)

1

2

3

4

5

年份

2015

2016

2017

2018

2019

單價(jià)(元/公斤)

18

20

23

25

29

藥材的收購(gòu)價(jià)格始終為20/公斤,其畝產(chǎn)量的頻率分布直方圖如下:

1)若藥材的單價(jià)(單位:元/公斤)與年份編號(hào)具有線性相關(guān)關(guān)系,請(qǐng)求出關(guān)于的回歸直線方程,并估計(jì)2020年藥材的單價(jià);

2)用上述頻率分布直方圖估計(jì)藥材的平均畝產(chǎn)量,若不考慮其他因素,試判斷2020年該村應(yīng)種植藥材還是藥材?并說(shuō)明理由.

參考公式:(回歸方程中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是指空氣中直徑小于或等于2.5微米的顆粒物(也稱(chēng)可入肺顆粒物),為了探究車(chē)流量與的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某時(shí)間段車(chē)流量與濃度的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

車(chē)流量(萬(wàn)輛)

50

51

54

57

58

的濃度(微克/立方米)

39

40

42

44

45

1)根據(jù)上表數(shù)據(jù),求出這五組數(shù)據(jù)組成的散點(diǎn)圖的樣本中心坐標(biāo);

2)用最小二乘法求出關(guān)于的線性回歸方程;

3)若周六同一時(shí)間段車(chē)流量是100萬(wàn)輛,試根據(jù)(2)求出的線性回歸方程預(yù)測(cè),此時(shí)的濃度是多少?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若上單調(diào)遞減,求的取值范圍;

(2)若處取得極值,判斷當(dāng)時(shí),存在幾條切線與直線平行,請(qǐng)說(shuō)明理由;

(3)若有兩個(gè)極值點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案