(本題滿分12分)過(guò)點(diǎn)作直線與拋物線相交于兩點(diǎn),圓
(1)若拋物線在點(diǎn)處的切線恰好與圓相切,求直線的方程;
(2)過(guò)點(diǎn)分別作圓的切線,試求的取值范圍.
(I). (Ⅱ).
解析試題分析:(I)設(shè)由,得過(guò)點(diǎn)的切線方程為:
,即 (3分)
由已知:,又, (5分)
,即點(diǎn)坐標(biāo)為, (6分)
直線的方程為:. (7分)
(Ⅱ)由已知,直線的斜率存在,則設(shè)直線的方程為:,(8分)
聯(lián)立,得
(9分)
解法二: (12分)
(13分)
(15分)
解法三:,
同理, (13分)
故的取值范圍是. (15分)
考點(diǎn):本題主要考查直線與拋物線的位置關(guān)系,圓與拋物線的位置關(guān)系。
點(diǎn)評(píng):容易題,曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(2)解法較多,但都涉及到整體代換,簡(jiǎn)化證明過(guò)程,值得學(xué)習(xí)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖橢圓:的兩個(gè)焦點(diǎn)為、和頂點(diǎn)、構(gòu)成面積為32的正方形.
(1)求此時(shí)橢圓的方程;
(2)設(shè)斜率為的直線與橢圓相交于不同的兩點(diǎn)、、為的中點(diǎn),且. 問(wèn):、兩點(diǎn)能否關(guān)于直線對(duì)稱. 若能,求出的取值范圍;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍的橢圓經(jīng)過(guò)點(diǎn)M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個(gè)不同點(diǎn).
(ⅰ)若為鈍角,求直線在軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知橢圓的離心率為,橢圓短軸長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)切圓半徑為.記為以曲線與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是過(guò)橢圓中心的任意弦,是線段的垂直平分線.是上異于橢圓中心的點(diǎn).
(i)若(為坐標(biāo)原點(diǎn)),當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(ii)若是與橢圓的交點(diǎn),求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)直線l:y=kx+1與雙曲線C:的右支交于不同的兩點(diǎn)A,B
(Ⅰ)求實(shí)數(shù)k的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過(guò)雙曲線C的右焦點(diǎn)F?若存在,求出k的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在雙曲線中,F(xiàn)1、F2分別為其左右焦點(diǎn),點(diǎn)P在雙曲線上運(yùn)動(dòng),求△PF1F2的重心G的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
(1)求直線被雙曲線截得的弦長(zhǎng);
(2)求過(guò)定點(diǎn)的直線被雙曲線截得的弦中點(diǎn)軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知橢圓,其左準(zhǔn)線為,右準(zhǔn)線為,拋物線以坐標(biāo)原點(diǎn)為頂點(diǎn),為準(zhǔn)線,交于兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)求線段的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com