已知α,β均為銳角,cos(α+β)=-
11
14
,cosα=
1
7
,則角cosβ為( 。
A、
1
3
B、
2
2
C、
3
2
D、
1
2
考點:兩角和與差的余弦函數(shù)
專題:計算題,三角函數(shù)的求值
分析:先利用同角三角函數(shù)的基本關系求得sinα和sin(α+β)的值,然后利用cosβ=cosp[(α+β)-α],根據(jù)兩角和公式求得答案.
解答: 解:α,β均為銳角,
∴sinα=
1-
1
49
=
4
3
7
,sin(α+β)=
1-(
11
14
)2
=
5
3
14
,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=(-
11
14
)×
1
7
+
5
3
14
×
4
3
7
=
1
2

故選:D.
點評:本題主要考查了兩角和公式的化簡求值和同角三角函數(shù)的基本關系的應用.熟練記憶三角函數(shù)的基本公式是解題的基礎,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列中,若項數(shù)為2n+1,S與S分別為偶數(shù)與奇數(shù)項的和,則是否有
S-a1
S
=q
,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(2x+1)=x2-2x,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈R,若a>b,則下列不等式成立的是( 。
A、lga>lgb
B、0.5a>0.5b
C、a
1
2
b
1
2
D、
3a
3b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結論:
①若命題p:存在x∈R,使tanx=1 命題q:任意x∈R,x2-x+1>0,則命題“p且(¬q)”是假命題.
②“若a>b>0且c<0則
c
a
c
b
”的逆否命題是真命題.
③命題“對?x∈R,都有x≤1”的否定是“?x0∈R,使x0>1”
④設p、q是簡單命題,若“p或q”是假命題,則“¬p且¬q”為真命題.
其中正確的序號有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
x-2
x+1
≤2的解是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“若x∈N*,則x2≥0”的逆命題,否命題,逆否命題中,正確的個數(shù)是(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的方程為(x-1)2+(y-1)2=2,點A(2,2).
(1)直線l1過點A,且與圓C相交所得弦長最大,求直線l1的方程;
(2)直線l2過點A,與圓C相切分別交x軸,y軸于D、E.求△ODE的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果實數(shù)x、y滿足條件
y≤1
2x-y-1≤0
x+y-1≥0
,則2x+y的最大值為( 。
A、1
B、
5
3
C、2
D、3

查看答案和解析>>

同步練習冊答案