已知函數(shù)有三個(gè)極值點(diǎn)。
(I)證明:;
(II)若存在實(shí)數(shù)c,使函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍。
(1)利用導(dǎo)數(shù)的符號(hào)判定函數(shù)單調(diào)性,以及桉樹的極值,進(jìn)而證明。
(2) 當(dāng)時(shí),所以且
即故或反之, 當(dāng)或時(shí),
總可找到使函數(shù)在區(qū)間上單調(diào)遞減.
解析試題分析:解:(I)因?yàn)楹瘮?shù)有三個(gè)極值點(diǎn),
所以有三個(gè)互異的實(shí)根.
設(shè)則
當(dāng)時(shí), 在上為增函數(shù);
當(dāng)時(shí), 在上為減函數(shù);
當(dāng)時(shí), 在上為增函數(shù);
所以函數(shù)在時(shí)取極大值,在時(shí)取極小值. (3分)
當(dāng)或時(shí),最多只有兩個(gè)不同實(shí)根.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/66/0/1uqfy4.png" style="vertical-align:middle;" />有三個(gè)不同實(shí)根, 所以且.
即,且,
解得且故. (5分)
(II)由(I)的證明可知,當(dāng)時(shí), 有三個(gè)極值點(diǎn).
不妨設(shè)為(),則
所以的單調(diào)遞減區(qū)間是,
若在區(qū)間上單調(diào)遞減,
則, 或,
若,則.由(I)知,,于是
若,則且.由(I)知,
又當(dāng)時(shí),;
因此, 當(dāng)時(shí),所以且
即故或反之, 當(dāng)或時(shí),
總可找到使函數(shù)在區(qū)間上單調(diào)遞減. (10分)
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是利用導(dǎo)數(shù)的符號(hào)判定函數(shù)的單調(diào)性,以及函數(shù)的極值,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若,函數(shù)是R上的奇函數(shù),當(dāng)時(shí),(i)求實(shí)數(shù)與
的值;(ii)當(dāng)時(shí),求的解析式;
(2)若方程的兩根中,一根屬于區(qū)間,另一根屬于區(qū)間,求實(shí)數(shù)的取 值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),函數(shù)
①當(dāng)時(shí),求函數(shù)的表達(dá)式;
②若,函數(shù)在上的最小值是2 ,求的值;
③在②的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)在R上是偶函數(shù),在區(qū)間(-∞,0)上遞增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f9/b/ramqe1.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù)。
(Ⅰ)求的值;
(Ⅱ)解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
定義在上的函數(shù)滿足:①對(duì)任意都有;
② 在上是單調(diào)遞增函數(shù);③.
(Ⅰ)求的值;
(Ⅱ)證明為奇函數(shù);
(Ⅲ)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知是定義在上的偶函數(shù),當(dāng)時(shí),.
(1)求函數(shù)的解析式;
(2)若不等式的解集為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知函數(shù),,滿足,.
(1)求,的值;
(2)若各項(xiàng)為正的數(shù)列的前項(xiàng)和為,且有,設(shè),求數(shù)列的前項(xiàng)和;
(3)在(2)的條件下,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com