【題目】已知等差數(shù)列滿足
,
.
(1)求的通項(xiàng)公式;
(2)若,數(shù)列
滿足關(guān)系式
,求證:數(shù)列
的通項(xiàng)公式為
;
(3)設(shè)(2)中的數(shù)列的前n項(xiàng)和為
,對(duì)任意的正整數(shù)n,
恒成立,求實(shí)數(shù)p的取值范圍.
【答案】(1),
;(2)見解析;(3)
【解析】
(1)由等差數(shù)列由通項(xiàng)公式,得到首項(xiàng)與公差的方程組,得出首項(xiàng)與公差的值,得到通項(xiàng)公式;
(2)已知數(shù)列的遞推公式,由疊加法,得到數(shù)列的通項(xiàng)公式;
(3)將數(shù)列求和得到前n項(xiàng)和后,將條件變形后,得到關(guān)于參數(shù)p的關(guān)系式,這是一個(gè)恒成立問題,通過最值的研究,得到本題結(jié)論.
(1)設(shè)等差數(shù)列的公差為d,
由已知,有,
解得
所以,
即等差數(shù)列的通項(xiàng)公式為
,
.
(2)因?yàn)?/span>,
所以,當(dāng)時(shí),
.
證法一(數(shù)學(xué)歸納法):
①當(dāng)時(shí),
,結(jié)論成立;
②假設(shè)當(dāng)時(shí)結(jié)論成立,即
,
那么當(dāng)時(shí),
,
即時(shí),結(jié)論也成立.
由①,②得,當(dāng)時(shí),
成立.
證法二:當(dāng)時(shí),
,
所以
將這個(gè)式子相加,得
,
即.
當(dāng)時(shí),
也滿足上式.
所以數(shù)列的通項(xiàng)公式為
.
(3)由(2),所以
,
原不等式變?yōu)?/span>
,即
,
對(duì)任意
恒成立,
為任意的正整數(shù),
.
的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地支持“中小型企業(yè)”的發(fā)展,某市決定對(duì)部分企業(yè)的稅收進(jìn)行適當(dāng)?shù)臏p免,某機(jī)構(gòu)調(diào)查了當(dāng)?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個(gè)結(jié)論:
①樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;
②如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計(jì)有55%的當(dāng)?shù)刂行⌒推髽I(yè)能享受到減免稅政策;
③樣本的中位數(shù)為480萬元.
其中正確結(jié)論的個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冬季歷來是交通事故多發(fā)期,面臨著貨運(yùn)高危運(yùn)行、惡劣天氣頻發(fā)、包車客運(yùn)監(jiān)管漏洞和農(nóng)村交通繁忙等四個(gè)方面的挑戰(zhàn).全國公安交管部門要認(rèn)清形勢(shì)、正視問題,針對(duì)近期事故暴露出來的問題,強(qiáng)薄羽、補(bǔ)短板、堵漏洞,進(jìn)一步推動(dòng)五大行動(dòng),鞏固擴(kuò)大五大行動(dòng)成果,全力確保冬季交通安全形勢(shì)穩(wěn)定.據(jù)此,某網(wǎng)站推出了關(guān)于交通道路安全情況的調(diào)查,通過調(diào)查年齡在的人群,數(shù)據(jù)表明,交通道路安全仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此類問題的約占80%,現(xiàn)從參與調(diào)查并關(guān)注交通道路安全的人群中隨機(jī)選出100人,并將這100人按年齡分組:第1組
,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(1)求這100人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位);
(2)現(xiàn)在要從年齡較大的第4,5組中用分層抽樣的方法抽取8人,再從這8人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求第4組恰好抽到2人的概率;
(3)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,設(shè)其中關(guān)注交通道路安全的人數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定數(shù)列,記該數(shù)列前
項(xiàng)
中的最大項(xiàng)為
,即
,該數(shù)列后
項(xiàng)
中的最小項(xiàng)為
,記
,
;
(1)對(duì)于數(shù)列:3,4,7,1,求出相應(yīng)的,
,
;
(2)若是數(shù)列
的前
項(xiàng)和,且對(duì)任意
,有
,其中
為實(shí)數(shù),
且
,
.
(�。┰O(shè),證明:數(shù)列
是等比數(shù)列;
(ⅱ)若數(shù)列對(duì)應(yīng)的
滿足
對(duì)任意的正整數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請(qǐng)研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為
,經(jīng)過點(diǎn)
的直線與橢圓相交于
,
兩點(diǎn),點(diǎn)
為線段
的中點(diǎn),點(diǎn)
為坐標(biāo)原點(diǎn).當(dāng)直線
的斜率為
時(shí),直線
的斜率為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為橢圓的左頂點(diǎn),點(diǎn)
為橢圓的右頂點(diǎn),過
的動(dòng)直線交該橢圓于
,
兩點(diǎn),記
的面積為
,
的面積為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過點(diǎn)
,它的一個(gè)焦點(diǎn)與拋物線E:
的焦點(diǎn)重合,斜率為k的直線l交拋物線E于A、B兩點(diǎn),交橢圓
于C、D兩點(diǎn).
(1)求橢圓的方程;
(2)直線l經(jīng)過點(diǎn),設(shè)點(diǎn)
,且
的面積為
,求k的值;
(3)若直線l過點(diǎn),設(shè)直線
,
的斜率分別為
,
,且
,
,
成等差數(shù)列,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)和
是雙曲線
上的兩點(diǎn),線段
的中點(diǎn)為
,直線
不經(jīng)過坐標(biāo)原點(diǎn)
.
(1)若直線和直線
的斜率都存在且分別為
和
,求證:
;
(2)若雙曲線的焦點(diǎn)分別為、
,點(diǎn)
的坐標(biāo)為
,直線
的斜率為
,求由四點(diǎn)
、
、
、
所圍成四邊形
的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com