【題目】為了更好地支持中小型企業(yè)的發(fā)展,某市決定對部分企業(yè)的稅收進行適當?shù)臏p免,某機構調(diào)查了當?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個結論:

樣本數(shù)據(jù)落在區(qū)間的頻率為0.45

如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計有55%的當?shù)刂行⌒推髽I(yè)能享受到減免稅政策;

樣本的中位數(shù)為480萬元.

其中正確結論的個數(shù)為( )

A.0B.1C.2D.3

【答案】D

【解析】

根據(jù)直方圖求出,求出的頻率,可判斷;求出的頻率,可判斷;根據(jù)中位數(shù)是從左到右頻率為的分界點,先確定在哪個區(qū)間,再求出占該區(qū)間的比例,求出中位數(shù),判斷③.

,,

的頻率為,正確;

的頻率為,正確;

的頻率為,的頻率為

中位數(shù)在且占該組的,

故中位數(shù)為,正確.

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】去年年底,某商業(yè)集團公司根據(jù)相關評分細則,對其所屬25家商業(yè)連鎖店進行了考核評估.將各連鎖店的評估分數(shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團公司依據(jù)評估得分,將這些連鎖店劃分為A,B,C,D四個等級,等級評定標準如下表所示.

評估得分

[60,70)

[70,80)

[80,90)

[90,100)

評定等級

D

C

B

A

(1)估計該商業(yè)集團各連鎖店評估得分的眾數(shù)和平均數(shù);

(2)從評估分數(shù)不小于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求至少選一家A等級的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平行四邊形中,,,EA的中點(如圖1),將沿CD折起到圖2的位置,得到四棱錐是

1)求證:平面PDA;

2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,為常數(shù))對于任意的恒成立.

1)若,求的值;

2)證明:數(shù)列是等差數(shù)列;

3)若,關于的不等式有且僅有兩個不同的整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.

1)證明:平面.

2)若,當三棱錐的體積最大時,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,分別在軸,軸上運動,,點在線段上,且.

1)求點的軌跡的方程;

2)直線交于,兩點,,若直線的斜率之和為2,直線是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)上的單調(diào)區(qū)間;

2)用表示中的最大值,的導函數(shù),設函數(shù),若上恒成立,求實數(shù)的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】O為坐標原點,動點M在橢圓C上,過Mx軸的垂線,垂足為N,點P滿足.

1)求點P的軌跡方程;

2)設點在直線上,且.證明:過點P且垂直于OQ的直線C的左焦點F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,動直線l與橢圓E交于不同的兩點,,且△AOB的面積為1,其中O為坐標原點.

1)證明:為定值;

2)設線段AB的中點為M,求的最大值.

查看答案和解析>>

同步練習冊答案