【題目】為了更好地支持“中小型企業(yè)”的發(fā)展,某市決定對部分企業(yè)的稅收進行適當?shù)臏p免,某機構調(diào)查了當?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個結論:
①樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;
②如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計有55%的當?shù)刂行⌒推髽I(yè)能享受到減免稅政策;
③樣本的中位數(shù)為480萬元.
其中正確結論的個數(shù)為( )
A.0B.1C.2D.3
科目:高中數(shù)學 來源: 題型:
【題目】去年年底,某商業(yè)集團公司根據(jù)相關評分細則,對其所屬25家商業(yè)連鎖店進行了考核評估.將各連鎖店的評估分數(shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團公司依據(jù)評估得分,將這些連鎖店劃分為A,B,C,D四個等級,等級評定標準如下表所示.
評估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評定等級 | D | C | B | A |
(1)估計該商業(yè)集團各連鎖店評估得分的眾數(shù)和平均數(shù);
(2)從評估分數(shù)不小于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求至少選一家A等級的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平行四邊形中,,,,是EA的中點(如圖1),將沿CD折起到圖2中的位置,得到四棱錐是.
(1)求證:平面PDA;
(2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,(為常數(shù))對于任意的恒成立.
(1)若,求的值;
(2)證明:數(shù)列是等差數(shù)列;
(3)若,關于的不等式有且僅有兩個不同的整數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)若,當三棱錐的體積最大時,求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,分別在軸,軸上運動,,點在線段上,且.
(1)求點的軌跡的方程;
(2)直線與交于,兩點,,若直線,的斜率之和為2,直線是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在上的單調(diào)區(qū)間;
(2)用表示中的最大值,為的導函數(shù),設函數(shù),若在上恒成立,求實數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設O為坐標原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足.
(1)求點P的軌跡方程;
(2)設點在直線上,且.證明:過點P且垂直于OQ的直線過C的左焦點F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,動直線l與橢圓E交于不同的兩點,,且△AOB的面積為1,其中O為坐標原點.
(1)證明:為定值;
(2)設線段AB的中點為M,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com