(本題滿分12分)
兩條互相平行的直線分別過點(diǎn)A(6,2)和B(-3,-1),并且各自繞著A,B旋轉(zhuǎn),如果兩條平行直線間的距離為d.
求:1)d的變化范圍;
2)當(dāng)d取最大值時(shí)兩條直線的方程.
(1) (0,3].(2) 3x+y-20=0和3x+y+10=0.
【解析】(1)兩直線的最大距離為直線與線段AB垂直時(shí),距離最大,最大值為|AB|=.所以d的變化范圍為.
(2)由于當(dāng)d最大時(shí),AB與直線垂直,所以可以利用AB的斜率求出直線的斜率,進(jìn)而求出其直線方程.
(1)方法一:①當(dāng)兩條直線的斜率不存在時(shí),即兩直線分別為x=6和x=-3,則它們之間的距離為9. ………………2分
②當(dāng)兩條直線的斜率存在時(shí),設(shè)這兩條直線方程為
l1:y-2=k(x-6),l2:y+1=k(x+3),
即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0, ………………4分
∴d==. ………………6分
即(81-d2)k2-54k+9-d2=0. ………………8分
∵k∈R,且d≠9,d>0,
∴Δ=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤3且d≠9. ………………12分
綜合①②可知,所求d的變化范圍為(0,3].
方法二:如圖所示,顯然有0<d≤|AB|.
而|AB|==3.
故所求的d的變化范圍為(0,3].
(2)由圖可知,當(dāng)d取最大值時(shí),兩直線垂直于AB.
而kAB==,
∴所求直線的斜率為-3. 故所求的直線方程分別為
y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com