【題目】如圖所示,矩形和矩形所在平面互相垂直,與平面及平面所成的角分別為,,、分別為、的中點(diǎn),且.
(1)求證:平面;
(2)求線段的長(zhǎng);
(3)求二面角的平面角的正弦值.
【答案】(1)證明見(jiàn)解析;(2);(3).
【解析】
試題分析:(1)由面面垂直的性質(zhì)定理易得面;由中位線定理可得,所以有面;(2)利用直角三角形中的邊角關(guān)系求得,在中,由勾股定理求得的長(zhǎng);(3)過(guò) 作于點(diǎn),過(guò)作于,連,由三垂線定理可證為所求二面角的平面角,用面積法求出和,由 求得二面角的平面角的正弦值.
試題解析:(1)證明:因?yàn)槊?/span>面,面面,,所以面.
因?yàn)?/span>,分別為,的中點(diǎn),所以,故面.………………(4分)
(2)由(1)可知為與面所成角,,
在直角三角形中,,,所以.
又面面,面面,
,所以面.
所以為與面所成角,,
因此,在直角三角形中,.
在直角三角形中,.………………(8分)
(3)如圖,過(guò)作于點(diǎn),過(guò)作于點(diǎn),連接.
因?yàn)?/span>面,面,
所以.
又,,所以面,
面,故,
又,,所以面.
面,故,又,
因此為所求二面角的平面角.
在直角三角形中,由面積相等有,得
在直角三角形中,同理可得.
.………………(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明“三角形中至少有兩個(gè)銳角”,下列假設(shè)正確的是( )
A. 三角形中至多有兩個(gè)銳角 B. 三角形中至多只有一個(gè)銳角
C. 三角形中三個(gè)角都是銳角 D. 三角形中沒(méi)有一個(gè)角是銳角
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于算法的敘述中正確的是( )
A. —個(gè)算法必須能解決一類問(wèn)題 B. 求解某個(gè)問(wèn)題的算法是唯一的
C. 算法不能重復(fù)使用 D. 算法的過(guò)程可以是無(wú)限的
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“所有9的倍數(shù)都是3的倍數(shù),某奇數(shù)是9的倍數(shù),故某奇數(shù)是3的倍數(shù).”上述推理( )
A. 大前提錯(cuò) B. 小前提錯(cuò) C. 結(jié)論錯(cuò) D. 正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若方程 所表示的曲線為C,給出下列四個(gè)命題:
①若C為橢圓,則;
②若C為雙曲線,則或;
③曲線C不可能是圓;
④若,曲線C為橢圓,且焦點(diǎn)坐標(biāo)為;
⑤若,曲線C為雙曲線,且虛半軸長(zhǎng)為.
其中真命題的序號(hào)為____________.(把所有正確命題的序號(hào)都填在橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若洗水壺要用 1 分鐘、燒開(kāi)水要用 10 分鐘、洗茶杯要用 2 分鐘、取茶葉要用 1 分鐘、 沏茶 1 分鐘,那么較合理的安排至少也需要 ( )
A. 10分鐘 B. 11分鐘 C. 12分鐘 D. 13分鐘
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
①方程若有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③函數(shù)的值域是,則函數(shù)的值域?yàn)?/span>;
④一條曲線和直線的公共點(diǎn)個(gè)數(shù)是,則的值不可能是1.
其中正確的有 (寫出所有正確的命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={1,a,5},B={2,a2+1}.若A∩B有且只有一個(gè)元素,則實(shí)數(shù)a的值為________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com