【題目】給出下列結(jié)論:在回歸分析中
(1)可用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;
(2)可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(3)可用相關(guān)系數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;
(4)可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.
以上結(jié)論中,不正確的是( )
A.(1)(3)B.(2)(3)C.(1)(4)D.(3)(4)
【答案】B
【解析】
由越大,模型的擬合效果越好,越大,模型的擬合效果越好,相關(guān)系數(shù)越大,模型的擬合效果越好,帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高,作出判斷即可.
用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故(1)正確;
用殘差平方和判斷模型的擬合效果,殘差平方和越小,模型的擬合效果越好,故(2)不正確;
可用相關(guān)系數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故(3)不正確;
用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高,故(4)正確;
故選:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)高等數(shù)學(xué)這學(xué)期分別用兩種不同的數(shù)學(xué)方式試驗(yàn)甲、乙兩個大一新班(人數(shù)均為人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各名的高等數(shù)學(xué)期末考試成績,得到莖葉圖:
(1)學(xué)校規(guī)定:成績不得低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷“能否在犯錯誤率的概率不超過0.025的前提下認(rèn)為成績優(yōu)異與教學(xué)方式有關(guān)?”
下面臨界值表僅供參考:
(參考方式:,其中)
(2)現(xiàn)從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?6分的同學(xué)至少有一個被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察某種疫苗預(yù)防疾病的效果,進(jìn)行動物試驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:現(xiàn)從所有試驗(yàn)動物中任取一只,取到“注射疫苗”動物的概率為.
未發(fā)病 | 發(fā)病 | 總計(jì) | |
未注射疫苗 | 20 | x | A |
注射疫苗 | 40 | y | B |
總計(jì) | 60 | 40 | 100 |
(1)求2×2列聯(lián)表中的數(shù)據(jù)x,y,A,B的值.
(2)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為疫苗有效?
附:
臨界值表:
P(K2≥k0) | 0.05 | 0.01 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
1當(dāng)時,討論函數(shù)的單調(diào)性;
2當(dāng),時,對任意,,都有成立,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了豐富學(xué)生的課外文體活動,分別開設(shè)了閱讀、書法、繪畫等文化活動;跑步、游泳、健身操等體育活動.該中學(xué)共有高一學(xué)生300名,要求每位學(xué)生必須選擇參加其中一項(xiàng)活動,現(xiàn)對高一學(xué)生的性別、學(xué)習(xí)積極性及選擇參加的文體活動情況進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下:
(1)在選擇參加體育活動的學(xué)生中按性別分層抽取6名,再從這6名學(xué)生中抽取2人了解家庭情況,求2人中至少有1名女生的概率;
(2)是否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與選擇參加文化活動有關(guān)?請說明你的理由.
附:參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合,,.若集合中的所有元素都能用中不超過9個的不同元素相加表示,求,并構(gòu)造達(dá)到最小時對應(yīng)的一個集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: 的左、右焦點(diǎn)分別為, 為坐標(biāo)原點(diǎn), 是雙曲線上在第一象限內(nèi)的點(diǎn),直線分別交雙曲線左、右支于另一點(diǎn), ,且,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(1,-3,2),=(-2,1,1),點(diǎn)A(-3,-1,4),B(-2,-2,2).
(1)求|2+|;
(2)在直線AB上,是否存在一點(diǎn)E,使得⊥ ?(O為原點(diǎn))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com