求下列各式的值.
(1)
1
2
lg25+lg2-lg
0.1
-log29×log32;
(2)
lg25+lg2•lg50+(lg2)2
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:(1)利用對數(shù)換底公式、對數(shù)的運算法則即可得出;
(2)利用lg2+lg5=1即可得出.
解答: 解:(1)原式=lg5+lg2-lg10-
1
2
-
2lg3
lg2
×
lg2
lg3
=1+
1
2
-2=-
1
2

(2)∵lg25+lg2•lg50+(lg2)2
=2lg5+lg2(1+lg5)+(lg2)2
=2lg5+lg2+lg2(lg2+lg5)
=2(lg2+lg5)=2
∴原式=
2
點評:本題考查了對數(shù)換底公式、對數(shù)的運算法則、lg2+lg5=1,考查了計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=n-an-7,n∈N*
(1)證明:{an-1}是等比數(shù)列;
(2)求數(shù)列{Sn}的通項公式,并求出n為何值時,Sn取得最小值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式:
(1)
5-32
+
(-
2
)2
;
(2)化簡(a 
2
3
b 
1
2
)(-3a 
1
2
b 
1
3
)÷(
1
3
a 
1
6
b 
5
6
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>0,b>0),F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,M(0,b),N(a,0),
MF1
MF2
=2,|
F2N
|=1,
(1)求橢圓方程;
(2)過圓x2+y2=1上任一點P作該圓的切線,交橢圓于A,B兩點,求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|ax2-2x-1=0},如果A∩R+=∅,求a的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)滿足條件f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);
(2)設g(x)=f(x)+(2-m)x+2m-1,已知g(x)在[0,1]上有且只有一個零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=log2(1-x).
(1)求f(x)的定義域;    
(2)求使f(x)>0成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某食品廠為.檢查一條自動包裝流水線的生產(chǎn)情況,隨機抽取該流水線上的40件產(chǎn)品作為樣本稱出它們的重量(單位:克),作出樣本的頻率分布直方圖如圖所示.
(1)根據(jù)頻率分布直方圖,則重量超過505克的產(chǎn)品數(shù)量有
 
件;
(2)從流水線上任取3件產(chǎn)品,則其中恰有2件產(chǎn)品的重量超過505克的概率=
 
;(先列式再化成最簡分數(shù))
(3)在這40件產(chǎn)品中任取2件,設ξ為重量超過505克的產(chǎn)品數(shù)量,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某戰(zhàn)士射擊1次,未中靶的概率是0.05,中靶環(huán)數(shù)大于5的概率為0.7,則中靶環(huán)數(shù)大于0且小于5的概率為
 

查看答案和解析>>

同步練習冊答案