【題目】甲,乙兩人進(jìn)行拋硬幣游戲,規(guī)定:每次拋幣后,正面向上甲贏,否則乙贏.此時(shí),兩人正在游戲,且知甲再贏(常數(shù))次就獲勝,而乙要再贏(常數(shù))次才獲勝,其中一人獲勝游戲就結(jié)束.設(shè)再進(jìn)行次拋幣,游戲結(jié)束.

1)若,,求概率;

2)若,求概率的最大值(用表示).

【答案】1.(2

【解析】

1)根據(jù)比賽4次結(jié)束,可知甲、乙兩人獲勝次數(shù)之比可能是:2:2且最后一次甲勝或者1:3且最后一次乙勝,利用獨(dú)立重復(fù)試驗(yàn)公式可求結(jié);

2)先表示出,構(gòu)造函數(shù),作商比較,判斷出單調(diào)性,結(jié)合單調(diào)性可得最大值.

1)依題意,游戲結(jié)束時(shí),甲、乙兩人獲勝次數(shù)之比可能是:2:2且最后一次甲勝或者1:3且最后一次乙勝,

.

2)依題意,.

設(shè)

.

(*)

.(#)

因?yàn)?/span>的判別式

(顯然在時(shí)恒成立),

所以.

又因?yàn)?/span>,所以(#)恒成立,從而(*)成立.

所以,即(當(dāng)且僅當(dāng)時(shí),取“=”),

所以的最大值為,

的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)引進(jìn)現(xiàn)代化管理體制,生產(chǎn)效益明顯提高.2018年全年總收入與2017年全年總收入相比增長(zhǎng)了一倍,實(shí)現(xiàn)翻番.同時(shí)該企業(yè)的各項(xiàng)運(yùn)營(yíng)成本也隨著收入的變化發(fā)生了相應(yīng)變化.下圖給出了該企業(yè)這兩年不同運(yùn)營(yíng)成本占全年總收入的比例,下列說(shuō)法正確的是(

A.該企業(yè)2018年原材料費(fèi)用是2017年工資金額與研發(fā)費(fèi)用的和

B.該企業(yè)2018年研發(fā)費(fèi)用是2017年工資金額、原材料費(fèi)用、其它費(fèi)用三項(xiàng)的和

C.該企業(yè)2018年其它費(fèi)用是2017年工資金額的

D.該企業(yè)2018年設(shè)備費(fèi)用是2017年原材料的費(fèi)用的兩倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列為等差數(shù)列,且,

(Ⅰ)求數(shù)列的通項(xiàng),及前項(xiàng)和

(Ⅱ)請(qǐng)你在數(shù)列的前4項(xiàng)中選出三項(xiàng),組成公比的絕對(duì)值小于1的等比數(shù)列的前3項(xiàng),并記數(shù)列的前n項(xiàng)和為.若對(duì)任意正整數(shù),不等式恒成立,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)班級(jí)(各40名學(xué)生)進(jìn)行一門考試,為易于統(tǒng)計(jì)分析,將甲、乙兩個(gè)班學(xué)生的成績(jī)分成如下四組:,,并分別繪制了如下的頻率分布直方圖:

規(guī)定:成績(jī)不低于90分的為優(yōu)秀,低于90分的為不優(yōu)秀.

1)根據(jù)這次抽查的數(shù)據(jù),填寫下面的列聯(lián)表:

優(yōu)秀

不優(yōu)秀

合計(jì)

甲班

乙班

合計(jì)

2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為成績(jī)是否優(yōu)秀與班級(jí)有關(guān)?

附:臨界值參考表與參考公式

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線的普通方程和曲線的直角坐標(biāo)方程;

2)若射線)與直線和曲線分別交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):

x

1

2

3

4

5

6

7

8

y

112

61

44.5

35

30.5

28

25

24

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.觀察散點(diǎn)圖,兩個(gè)變量不具有線性相關(guān)關(guān)系,現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對(duì)兩個(gè)變量的關(guān)系進(jìn)行擬合,已求得:用指數(shù)函數(shù)模型擬合的回歸方程為的相關(guān)系數(shù);,,,,(其中);

1)用反比例函數(shù)模型求關(guān)于的回歸方程;

2)用相關(guān)系數(shù)判斷上述兩個(gè)模型哪一個(gè)擬合效果更好(精確到0.01),并用其估計(jì)產(chǎn)量為10千件時(shí)每件產(chǎn)品的非原料成本.

參考數(shù)據(jù):,

參考公式:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,,相關(guān)系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) , .

(1)若存在極值點(diǎn)1,求的值;

(2)若存在兩個(gè)不同的零點(diǎn),求證: 為自然對(duì)數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),以AB為直徑作圓,記為,與拋物線C的準(zhǔn)線始終相切.

1)求拋物線C的方程;

2)過(guò)圓心Mx軸垂線與拋物線相交于點(diǎn)N,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,,,且的最小值為,則________,若P為邊AB上任意一點(diǎn),則的最小值是________

查看答案和解析>>

同步練習(xí)冊(cè)答案