(本小題滿分10分)甲、乙兩人進行一次象棋比賽,約定先勝3局者獲得這次比賽的勝利,比賽結束.假設在一局中,甲獲勝的概率為0.6,乙獲勝的概率為0.4,各局比賽結果相互獨立,已知前2局中,甲、乙各勝1局.
(Ⅰ)求甲獲得這次比賽勝利的概率;
(Ⅱ)設ξ表示從第3局開始到比賽結束所進行的局數(shù),求ξ的分布列及數(shù)學期望.
解:(Ⅰ)記B表示事件:甲獲得這次比賽的勝利.
因前兩局中,甲、乙各勝1局,故甲獲得這次比賽的勝利當且僅當在后面的比賽中,甲先勝2局,由于各局比賽結果相互獨立,
故:P(B)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648. - (5分)
(2)ξ的可能取值為2,3.由于各局比賽結果相互獨立,所以
P(ξ=2)=0.6×0.6+0.4×0.4=0.52.P(ξ=3)=1-P(ξ=2)=0.48.
∴ξ的分布列為:

∴Eξ=2×P(ξ=2)+3×P(ξ=3)=2×0.52+3×0.48=2.48. --------- (10分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

有兩枚大小相同、質地均勻的正四面體玩具,每個玩具的各個面上分別寫著數(shù)字1,2,3,5。同時投擲這兩枚玩具一次,記為兩個朝下的面上的數(shù)字之和。
(1)求事件“m不小于6”的概率;                                                                    
(2)“m為奇數(shù)”的概率和“m為偶數(shù)”的概率是不是相等?證明你作出的結論。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)14、如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個等腰直角三角形,現(xiàn)有均勻的豆子散落在正方形中,問豆子落在中間帶形區(qū)域的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

乒乓球按其顏色分為白、黃兩色,按質量優(yōu)劣分為☆、☆☆、☆☆☆三等,現(xiàn)袋中有6個不同的球,從中任取2個,事件 “取到的2個球☆個數(shù)之和為奇數(shù)”,事件 “取到的2個球同色”,則(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

現(xiàn)有10張獎券,8張2元的,2張5元的,某人從中隨機地、無放回的抽取3張,則此人得獎金額的數(shù)學期望是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

從一副標準的52張撲克牌(不含大王和小王)中任意抽一張,抽到黑桃Q的概率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)體育課進行籃球投籃達標測試。規(guī)定:每位同學有5次投籃機會,若
投中3次則“達標”;為節(jié)省時間,同時規(guī)定:若投籃不到5次已達標,則停止投籃;若即
便后面投籃全中,也不能達標(前3次投中0次)則也停止投籃。同學甲投籃命中率是,
且每次投籃互不影響。
(1)求同學甲測試達標的概率;
(2)設測試同學甲投籃次數(shù)記為,求的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(8分)做投擲2顆骰子試驗,用(x,y)表示點P的坐標,其中x表示第1顆
骰子出現(xiàn)的點數(shù),y表示第2顆骰子出現(xiàn)的點數(shù).
(I)求點P在直線y = x上的概率;  (II)求點P滿足x+y10的概率;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

查看答案和解析>>

同步練習冊答案