設(shè)曲線
在點(1,
)處的切線與直線
平行,則
( )
曲線
在點(1,
)處的切線斜率,就是函數(shù)
在點(1,
)處的導(dǎo)數(shù)值,由
,及兩直線平行,斜率相等得,
,解得
.故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)f(x)的定義域為R,f(-1)=2,對任意x∈R,f′(x)>2,則f(x)>2x+4的解集為
A.(-1,+∞) | B.(-1,1) | C.(-∞,-1) | D.(-∞,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
(理科)已知函數(shù)
是定義在
上的奇函數(shù),當(dāng)
時,
的圖象如圖所示,則不等式
的解集是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
的圖象過點
,且在
和
上為增函數(shù),在
上為減函數(shù).
(I)求
的解析式;
(II)求
在
上的極值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
的定義域是
,對于任意的
,有
,且當(dāng)
時,
.
(Ⅰ)驗證函數(shù)
是否滿足上述這些條件;
(Ⅱ)你發(fā)現(xiàn)這樣的函數(shù)
還具有其它什么樣的主要性質(zhì)?試就函數(shù)的奇偶性、單調(diào)性的結(jié)論寫出來,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)曲線
在點(3,2)處的切線與直線
垂直,則
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)
的減區(qū)間是
********
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知點
在曲線
上移動,若經(jīng)過點
的曲線的切線的傾斜角為
,則
的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)
的單調(diào)增區(qū)間為
查看答案和解析>>